I am using groupby
in pandas to compute some aggregates statistics in pandas on data where columns in a data frame are organized with a hierarchical index.
For the computed statistics I want to get back to a table form in the end, where the groups are reconverted to columns with the group values, e.g. like:
index = pd.MultiIndex.from_tuples([('A', 'a'), ('B', 'b')])
df = pd.DataFrame(np.random.randn(8,2), columns=index)
which results in e.g. this data frame
A B
a b
0 0.511157 0.334748
1 0.031113 -0.477456
2 0.288080 -0.258238
3 0.138467 -0.955547
4 -0.087873 0.017494
5 -0.667393 1.190039
6 -0.068245 -1.282864
7 -0.996982 0.589667
Now I compute the statistics using groupby and reset the index to recreate a flat data frame:
df.groupby([('A','a')]).mean().reset_index()
(A, a) B
b
0 -0.996982 0.589667
1 -0.667393 1.190039
2 -0.087873 0.017494
3 -0.068245 -1.282864
4 0.031113 -0.477456
5 0.138467 -0.955547
6 0.288080 -0.258238
7 0.511157 0.334748
How can I achieve that ('A', 'a')
becomes a part of the multi index again, hopefully in an automatic fashion? Or stated otherwise: is there a way to preserve the hierarchical column structure during the groupby operation.
For me work add parameter as_index=False
to groupby
:
print df.groupby([('A','a')], as_index=False).mean()
A B
a b
0 -0.765088 -0.556601
1 -0.628040 2.074559
2 -0.516396 -2.028387
3 -0.152027 0.389853
4 0.450218 1.474989
5 0.718040 -0.882018
6 1.932556 -0.977316
7 2.028468 -0.875167
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With