If I reshape in python I use this:
import numpy as np
y= np.asarray([1,2,3,4,5,6,7,8])
x=2
z=y.reshape(-1, x)
print(z)
and get this
>>>
[[1 2]
[3 4]
[5 6]
[7 8]]
How would I get the same thing in julia? I tried:
z = [1,2,3,4,5,6,7,8]
x= 2
a=reshape(z,x,4)
println(a)
and it gave me:
[1 3 5 7
2 4 6 8]
If I use reshape(z,4,x)
it would give
[1 5
2 6
3 7
4 8]
Also is there a way to do reshape without specifying the second dimension like reshape(z,x)
or if the secondary dimension is more ambiguous?
I think what you have hit upon is NumPy stores in row-major order and Julia stores arrays in column major order as covered here.
So Julia is doing what numpy would do if you used
z=y.reshape(-1,x,order='F')
what you want is the transpose of your first attempt, which is
z = [1,2,3,4,5,6,7,8]
x= 2
a=reshape(z,x,4)'
println(a)
you want to know if there is something that will compute the 2nd dimension assuming the array is 2 dimensional? Not that I know of. Possibly ArrayViews? Here's a simple function to start
julia> shape2d(x,shape...)=length(shape)!=1?reshape(x,shape...):reshape(x,shape[1],Int64(length(x)/shape[1]))
shape2d (generic function with 1 method)
julia> shape2d(z,x)'
4x2 Array{Int64,2}:
1 2
3 4
5 6
7 8
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With