I have a polar (r,theta) grid (which means that each cell is an annulus section) containing values of some physical quantity (e.g. temperature), and I would like to re-grid (or re-project, or resample) these values onto a cartesian grid. Are there any Python packages that can do this?
I am not interested in converting the coordinates of the centers of the cells from polar to cartesian - this is very easy. Instead, I'm looking for a package that can actually re-grid the data properly.
Thanks for any suggestions!
Summary: to convert from Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) : x = r × cos( θ ) y = r × sin( θ )
To convert a point from Cartesian coordinates to cylindrical coordinates, use equations r2=x2+y2,tanθ=yx, and z=z.
Thanks for your answers - after thinking a bit more about this I came up with the following code:
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as mpl
from scipy.interpolate import interp1d
from scipy.ndimage import map_coordinates
def polar2cartesian(r, t, grid, x, y, order=3):
X, Y = np.meshgrid(x, y)
new_r = np.sqrt(X*X+Y*Y)
new_t = np.arctan2(X, Y)
ir = interp1d(r, np.arange(len(r)), bounds_error=False)
it = interp1d(t, np.arange(len(t)))
new_ir = ir(new_r.ravel())
new_it = it(new_t.ravel())
new_ir[new_r.ravel() > r.max()] = len(r)-1
new_ir[new_r.ravel() < r.min()] = 0
return map_coordinates(grid, np.array([new_ir, new_it]),
order=order).reshape(new_r.shape)
# Define original polar grid
nr = 10
nt = 10
r = np.linspace(1, 100, nr)
t = np.linspace(0., np.pi, nt)
z = np.random.random((nr, nt))
# Define new cartesian grid
nx = 100
ny = 200
x = np.linspace(0., 100., nx)
y = np.linspace(-100., 100., ny)
# Interpolate polar grid to cartesian grid (nearest neighbor)
fig = mpl.figure()
ax = fig.add_subplot(111)
ax.imshow(polar2cartesian(r, t, z, x, y, order=0), interpolation='nearest')
fig.savefig('test1.png')
# Interpolate polar grid to cartesian grid (cubic spline)
fig = mpl.figure()
ax = fig.add_subplot(111)
ax.imshow(polar2cartesian(r, t, z, x, y, order=3), interpolation='nearest')
fig.savefig('test2.png')
Which is not strictly re-gridding, but works fine for what I need. Just posting the code in case it is useful to anyone else. Feel free to suggest improvements!
I came to this post some time ago when trying to do something similar, this is, reprojecting polar data into a cartesian grid and vice-versa. The solution proposed here works fine. However, it takes some time to perform the coordinate transform. I just wanted to share another approach which can reduce the processing time up to 50 times or more.
The algorithm uses the scipy.ndimage.interpolation.map_coordinates
function.
Let's see a little example:
import numpy as np
# Auxiliary function to map polar data to a cartesian plane
def polar_to_cart(polar_data, theta_step, range_step, x, y, order=3):
from scipy.ndimage.interpolation import map_coordinates as mp
# "x" and "y" are numpy arrays with the desired cartesian coordinates
# we make a meshgrid with them
X, Y = np.meshgrid(x, y)
# Now that we have the X and Y coordinates of each point in the output plane
# we can calculate their corresponding theta and range
Tc = np.degrees(np.arctan2(Y, X)).ravel()
Rc = (np.sqrt(X**2 + Y**2)).ravel()
# Negative angles are corrected
Tc[Tc < 0] = 360 + Tc[Tc < 0]
# Using the known theta and range steps, the coordinates are mapped to
# those of the data grid
Tc = Tc / theta_step
Rc = Rc / range_step
# An array of polar coordinates is created stacking the previous arrays
coords = np.vstack((Ac, Sc))
# To avoid holes in the 360º - 0º boundary, the last column of the data
# copied in the begining
polar_data = np.vstack((polar_data, polar_data[-1,:]))
# The data is mapped to the new coordinates
# Values outside range are substituted with nans
cart_data = mp(polar_data, coords, order=order, mode='constant', cval=np.nan)
# The data is reshaped and returned
return(cart_data.reshape(len(y), len(x)).T)
polar_data = ... # Here a 2D array of data is assumed, with shape thetas x ranges
# We create the x and y axes of the output cartesian data
x = y = np.arange(-100000, 100000, 1000)
# We call the mapping function assuming 1 degree of theta step and 500 meters of
# range step. The default order of 3 is used.
cart_data = polar_to_cart(polar_data, 1, 500, x, y)
I hope this helps someone in the same situation as me.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With