I am trying to replicate the Kron product using only repmat and reshape and I believe I am pretty close but I can't manage to do the last correct reshape.
Particularly I have problem in reshaping A
To make things simple let suppose we have
A=[1 3; 2 4]
B=[5 10; 10 5]
so my kron(A,B)
is going to be a 4x4 matrix.
kron=[5 10 15 30
10 5 30 15
10 20 20 40
20 10 40 20]
I am proceeding this way:
Y=repmat(B,2,2)
X=A(:);
X=repmat(X,1,2)';
X=X(:);
X=repmat(X,1,2);
which gives me the following 8x2 Matrix:
X= [1 1
1 1
2 2
2 2
3 3
3 3
4 4
4 4]
I can't just figure out how to do the correct reshape to obtain my 4x4 matrix:
X=[1 1 3 3
1 1 3 3
2 2 4 4
2 2 4 4]
Then I will be able to compute: X.*Y=kron(A,B)
Here's one approach using the powerful trio of bsxfun
, permute
and reshape
-
M = bsxfun(@times,B,permute(A,[3 4 1 2]));
out = reshape(permute(M,[1 3 2 4]),size(A,1)*size(B,1),[]);
If you are hell bent on using repmat
, perform the calculation of M
with it, like so -
M = repmat(B,[1 1 size(A)]).*permute(repmat(A,[1 1 size(B)]),[3 4 1 2])
Verify output by comparing against kron
for generic matrix sizes -
>> A = rand(4,5);
>> B = rand(6,7);
>> M = bsxfun(@times,B,permute(A,[3 4 1 2]));
>> out = reshape(permute(M,[1 3 2 4]),size(A,1)*size(B,1),[]);
>> out_kron = kron(A,B);
>> max(abs(out(:) - out_kron(:)))
ans =
0
Here's one using matrix-multiplication
and as such must be pretty efficient -
[mA,nA] = size(A);
[mB,nB] = size(B);
out = reshape(permute(reshape(B(:)*A(:).',mB,nB,mA,nA),[1 3 2 4]),mA*mB,[])
If you don't want to use any loops or bsxfun
/arrayfun
-solutions, you can do as follows:
[ma,na] = size(A);
[mb,nb] = size(B);
Y = repmat(B,ma,mb);
X = reshape(repmat(reshape(repmat(A(:),1,mb)',ma*mb,na),nb,1),ma*mb,na*nb);
X.*Y
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With