This is a follow-up question to How to append an element to an array in MATLAB? That question addressed how to append an element to an array. Two approaches are discussed there:
A = [A elem] % for a row array
A = [A; elem] % for a column array
and
A(end+1) = elem;
The second approach has the obvious advantage of being compatible with both row and column arrays.
However, this question is: which of the two approaches is fastest? My intuition tells me that the second one is, but I'd like some evidence for or against that. Any idea?
A(end+1) = elem
) is fasterAccording to the benchmarks below (run with the timeit
benchmarking function from File Exchange), the second approach (A(end+1) = elem
) is faster and should therefore be preferred.
Interestingly, though, the performance gap between the two approaches is much narrower in older versions of MATLAB than it is in more recent versions.
function benchmark
n = logspace(2, 5, 40);
% n = logspace(2, 4, 40);
tf = zeros(size(n));
tg = tf;
for k = 1 : numel(n)
x = rand(round(n(k)), 1);
f = @() append(x);
tf(k) = timeit(f);
g = @() addtoend(x);
tg(k) = timeit(g);
end
figure
hold on
plot(n, tf, 'bo')
plot(n, tg, 'ro')
hold off
xlabel('input size')
ylabel('time (s)')
leg = legend('y = [y, x(k)]', 'y(end + 1) = x(k)');
set(leg, 'Location', 'NorthWest');
end
% Approach 1: y = [y, x(k)];
function y = append(x)
y = [];
for k = 1 : numel(x);
y = [y, x(k)];
end
end
% Approach 2: y(end + 1) = x(k);
function y = addtoend(x)
y = [];
for k = 1 : numel(x);
y(end + 1) = x(k);
end
end
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With