data1 = { 'node1': [2,2,3,6],
'node2': [6,7,7,28],
'weight': [1,2,1,1], }
df1 = pd.DataFrame(data1, columns = ['node1','node2','weight'])
I want to rename the node1 and node 2 in the data1 according in increasing order. Nodes are 2 3 6 7 28 so they become 1 2 3 4 5 respectively.
So the dataframe becomes-
data1 = { 'node1': [1,1,2,3],
'node2': [3,4,4,5],
'weight': [1,2,1,1], }
df1 = pd.DataFrame(data1, columns = ['node1','node2','weight'])
The data looked like this before
but now looks like this
Factorizing by sorting and assigning by reshaping i.e
df1[['node1','node2']] = (pd.factorize(np.sort(df1[['node1','node2']].values.reshape(-1)))[0]+1).reshape(-1,len(df1)).T
node1 node2 weight
0 1 3 1
1 1 4 2
2 2 4 1
3 3 5 1
Another approach with melt and factorize and renaming with dict
vals = pd.factorize(df1[['node1','node2']].melt().sort_values('value')['value'])
to_rename = dict(zip(vals[1],np.unique(vals[0]+1)))
# {2: 1, 3: 2, 6: 3, 7: 4, 28: 5}
df1[['node1','node2']] = df1[['node1','node2']].apply(lambda x : x.map(to_rename))
# Also df1[['node1','node2']] = df1[['node1','node2']].replace(to_rename) Thanks @jezrael
node1 node2 weight
0 1 3 1
1 1 4 2
2 2 4 1
3 3 5 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With