I am plotting two subplots that share the same x-axis but when I plot I only see the x-axis ticks on the second subplot. How can I make the x-ticks visible on both subplots?
Also I would like to set y-labels for both subplots but only the second is visible. Can you please help in displaying the y-label on both subplots?
Below is my reproducible code.
#!/usr/bin/python3
import pandas as pd
desired_width = 1500
pd.set_option('display.width', desired_width)
import matplotlib.pyplot as plt
import numpy as np
df = pd.DataFrame([{'DATETIME': '2017-09-29 01:00,', 'Population': 1000, 'Temp': 90, 'State': 'California'},
{'DATETIME': '2017-09-29 01:00,', 'Population': 2000, 'Temp': 70, 'State': 'Illinois'},
{'DATETIME': '2017-09-29 01:00,', 'Population': 3000, 'Temp': 50, 'State': 'Georgia'},
{'DATETIME': '2017-09-29 02:00,', 'Population': 2000, 'Temp': 40, 'State': 'California'},
{'DATETIME': '2017-09-29 02:00,', 'Population': 6000, 'Temp': 20, 'State': 'Illinois'},
{'DATETIME': '2017-09-29 02:00,', 'Population': 4000, 'Temp': 30, 'State': 'Georgia'},
{'DATETIME': '2017-09-29 03:00,', 'Population': 3000, 'Temp': 40, 'State': 'California'},
{'DATETIME': '2017-09-29 03:00,', 'Population': 4000, 'Temp': 60, 'State': 'Illinois'},
{'DATETIME': '2017-09-29 03:00,', 'Population': 2000, 'Temp': 80, 'State': 'Georgia'}])
df.index = df['DATETIME']
df.index = (pd.to_datetime(df.index)).strftime("%m/%d %H:00")
fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True)
df.groupby('State')['Population'].plot(kind='line', linestyle='--', alpha=0.5, marker='o', legend=True, ax=axes[0])
plt.ylabel('Pop')
df.groupby('State')['Temp'].plot(kind='line', linestyle='--', alpha=0.5, marker='o', legend=True, ax=axes[1])
plt.ylabel('Temp')
plt.tick_params(axis='both', which='both', labelsize=7)
plt.tight_layout()
plt.show()
Current Chart Output:
As other answers have mentioned, to get the ylabel
showing up on both subplots, you can use the object-oriented interface here axes[0].set_ylabel
and axes[1].set_ylabel
.
You should also use .tick_params
on both axes to get the same size tick labels, etc. for both subplots
And finally, to get the tick labels to show up on the first subplot, as an alternative to looping over all the ticks and having to set them to be visible, you can achieve the same thing by giving just one more option tick_params
: labelbottom=True
.
fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True)
df.groupby('State')['Population'].plot(kind='line', linestyle='--', alpha=0.5, marker='o', legend=True, ax=axes[0])
axes[0].set_ylabel('Pop')
df.groupby('State')['Temp'].plot(kind='line', linestyle='--', alpha=0.5, marker='o', legend=True, ax=axes[1])
axes[1].set_ylabel('Temp')
axes[0].tick_params(axis='both', which='both', labelsize=7, labelbottom=True)
axes[1].tick_params(axis='both', which='both', labelsize=7)
There are a couple of things you can do. Either remove sharex = True
. Or, if you want to use that, sharex
sets the x ticks to not be visible i.e. set_visible(False)
. Therefore, you can set them to True
to stop this.
In order to have the subplots formatted the same, you need to set the tick params for each subplot by using axes[0].tick_params(axis='both', which='both', labelsize=7)
for both subplots (i.e. repeat for axes[1]
)
Note, personally I prefer to use matpotlib object oriented API i.e using ax.set_ylabel()
rather than plt.ylabel()
as I think it gives more control over which subplots and axes you are using. Therefore I have slightly modified your code in that regards too
df = pd.DataFrame([{'DATETIME': '2017-09-29 01:00,', 'Population': 1000, 'Temp': 90, 'State': 'California'},
{'DATETIME': '2017-09-29 01:00,', 'Population': 2000, 'Temp': 70, 'State': 'Illinois'},
{'DATETIME': '2017-09-29 01:00,', 'Population': 3000, 'Temp': 50, 'State': 'Georgia'},
{'DATETIME': '2017-09-29 02:00,', 'Population': 2000, 'Temp': 40, 'State': 'California'},
{'DATETIME': '2017-09-29 02:00,', 'Population': 6000, 'Temp': 20, 'State': 'Illinois'},
{'DATETIME': '2017-09-29 02:00,', 'Population': 4000, 'Temp': 30, 'State': 'Georgia'},
{'DATETIME': '2017-09-29 03:00,', 'Population': 3000, 'Temp': 40, 'State': 'California'},
{'DATETIME': '2017-09-29 03:00,', 'Population': 4000, 'Temp': 60, 'State': 'Illinois'},
{'DATETIME': '2017-09-29 03:00,', 'Population': 2000, 'Temp': 80, 'State': 'Georgia'}])
df.index = df['DATETIME']
df.index = (pd.to_datetime(df.index)).strftime("%m/%d %H:00")
fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True)
df.groupby('State')['Population'].plot(kind='line', linestyle='--', alpha=0.5, marker='o', legend=True, ax=axes[0])
axes[0].set_ylabel('Pop')
df.groupby('State')['Temp'].plot(kind='line', linestyle='--', alpha=0.5, marker='o', legend=True, ax=axes[1])
axes[1].set_ylabel('Temp')
# Set the formatting the same for both subplots
axes[0].tick_params(axis='both', which='both', labelsize=7)
axes[1].tick_params(axis='both', which='both', labelsize=7)
# set ticks visible, if using sharex = True. Not needed otherwise
for tick in axes[0].get_xticklabels():
tick.set_visible(True)
plt.tight_layout()
plt.show()
Which gives:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With