There was a gif on the internet where someone used some sort of CAD and drew multiple vector pictures in it. On the first frame they zoom-in on a tiny dot, revealing there a whole new different vector picture just on a different scale, and then they proceed to zoom-in further on another tiny dot, revealing another detailed picture, repeating several times. here is the link to the gif
Or another similar example: imagine you have a time-series with a granularity of a millisecond per sample and you zoom out to reveal years-worth of data.
My questions are: how such a fine-detailed data, in the end, gets rendered, when a huge amount of data ends up getting aliased into a single pixel.
Do you have to go through the whole dataset to render that pixel (i.e. in case of time-series: go through million records to just average them out into 1 line or in case of CAD render whole vector picture and blur it into tiny dot), or there are certain level-of-detail optimizations that can be applied so that you don't have to do this?
If so, how do they work and where one can learn about it?
This is a very well known problem in games development. In the following I am assuming you are using a scene graph, a node-based tree of objects.
Typical solutions involve a mix of these techniques:
At the lowest level, you could even just use the object's bounding box. Checking whether a bounding box is in view is only around 1-7 point checks depending on how you check. And you can utilise object parenting for transitive bounding boxes.
Clipping: if a polygon is not rendered in the view port at all, no need to render it. In the GIF you posted, when the camera zooms in on a new scene, what is left from the larger model is a single polygon in the background.
Re-scaling of world coordinates: as you zoom in, the coordinates for vertices become sub-zero floating point numbers. Given you want all coordinates as precise as possible and given modern CPUs can only handle floats with 64 bits precision (and often use only 32 for better performance), it's a good idea to reset the scaling of the visible objects. What I mean by that is that as your camera zooms in to say 1/1000 of the previous view, you can scale up the bigger objects by a factor of 1000, and at the same time adjust the camera position and focal length. Any newly attached small model would use its original scale, thus preserving its precision. This transition would be invisible to the viewer, but allows you to stay within well-defined 3d coordinates while being able to zoom in infinitely.
On a higher level: As you zoom into something and the camera gets closer to an object, it appears as if the world grows bigger relative to the view. While normally the camera space is moving and the world gets multiplied by the camera's matrix, the same effect can be achieved by changing the world coordinates instead of the camera.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With