I have the foll. dataframe:
df
   A   B 0  23  12 1  21  44 2  98  21   How do I remove the column names A and B from this dataframe? One way might be to write it into a csv file and then read it in specifying header=None. is there a way to do that without writing out to csv and re-reading?
You can set the header option to None to ignore header.
I think you cant remove column names, only reset them by range with shape:
print df.shape[1] 2  print range(df.shape[1]) [0, 1]  df.columns = range(df.shape[1]) print df     0   1 0  23  12 1  21  44 2  98  21   This is same as using to_csv and read_csv:
print df.to_csv(header=None,index=False) 23,12 21,44 98,21  print pd.read_csv(io.StringIO(u""+df.to_csv(header=None,index=False)), header=None)     0   1 0  23  12 1  21  44 2  98  21   Next solution with skiprows:
print df.to_csv(index=False) A,B 23,12 21,44 98,21  print pd.read_csv(io.StringIO(u""+df.to_csv(index=False)), header=None, skiprows=1)     0   1 0  23  12 1  21  44 2  98  21 
                        How to get rid of a header(first row) and an index(first column).
To write to CSV file:
df = pandas.DataFrame(your_array) df.to_csv('your_array.csv', header=False, index=False)   To read from CSV file:
df = pandas.read_csv('your_array.csv') a = df.values   If you want to read a CSV file that doesn't contain a header, pass additional parameter header:
df = pandas.read_csv('your_array.csv', header=None) 
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With