Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Invalid parameter for sklearn estimator pipeline

I am implementing an example from the O'Reilly book "Introduction to Machine Learning with Python", using Python 2.7 and sklearn 0.16.

The code I am using:

pipe = make_pipeline(TfidfVectorizer(), LogisticRegression())
param_grid = {"logisticregression_C": [0.001, 0.01, 0.1, 1, 10, 100], "tfidfvectorizer_ngram_range": [(1,1), (1,2), (1,3)]}
grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))

The error being returned boils down to:

ValueError: Invalid parameter logisticregression_C for estimator Pipeline

Is this an error related to using Make_pipeline from v.0.16? What is causing this error?

like image 692
sudo_coffee Avatar asked Jan 27 '17 16:01

sudo_coffee


3 Answers

There should be two underscores between estimator name and it's parameters in a Pipeline logisticregression__C. Do the same for tfidfvectorizer

See the example at http://scikit-learn.org/stable/auto_examples/plot_compare_reduction.html#sphx-glr-auto-examples-plot-compare-reduction-py

like image 123
Vivek Kumar Avatar answered Nov 16 '22 14:11

Vivek Kumar


For a more general answer to using Pipeline in a GridSearchCV, the parameter grid for the model should start with whatever name you gave when defining the pipeline. For example:

# Pay attention to the name of the second step, i. e. 'model'
pipeline = Pipeline(steps=[
     ('preprocess', preprocess),
     ('model', Lasso())
])

# Define the parameter grid to be used in GridSearch
param_grid = {'model__alpha': np.arange(0, 1, 0.05)}

search = GridSearchCV(pipeline, param_grid)
search.fit(X_train, y_train)

In the pipeline, we used the name model for the estimator step. So, in the grid search, any hyperparameter for Lasso regression should be given with the prefix model__. The parameters in the grid depends on what name you gave in the pipeline. In plain-old GridSearchCV without a pipeline, the grid would be given like this:

param_grid = {'alpha': np.arange(0, 1, 0.05)}
search = GridSearchCV(Lasso(), param_grid)

You can find out more about GridSearch from this post.

like image 40
Bex T. Avatar answered Nov 16 '22 15:11

Bex T.


Note that if you are using a pipeline with a voting classifier and a column selector, you will need multiple layers of names:

pipe1 = make_pipeline(ColumnSelector(cols=(0, 1)),
                      LogisticRegression())
pipe2 = make_pipeline(ColumnSelector(cols=(1, 2, 3)),
                      SVC())
votingClassifier = VotingClassifier(estimators=[
        ('p1', pipe1), ('p2', pipe2)])

You will need a param grid that looks like the following:

param_grid = { 
        'p2__svc__kernel': ['rbf', 'poly'],
        'p2__svc__gamma': ['scale', 'auto'],
    }

p2 is the name of the pipe and svc is the default name of the classifier you create in that pipe. The third element is the parameter you want to modify.

like image 7
Eric Wiener Avatar answered Nov 16 '22 15:11

Eric Wiener