How to remove duplicate cells from each row, considering each row separately (and perhaps replace them with NaNs) in a Pandas dataframe?
It would be even better if we could shift all newly created NaNs to the end of each row.
Posts on how to remove entire rows which are deemed duplicate:
Post on how to remove duplicates from a list which is in a Pandas column:
Answer given here returns a series of strings, not a dataframe.
import pandas as pd
Let's create a dataframe:
df = pd.DataFrame({'a': ['A', 'A', 'C', 'B'], 'b': ['B', 'D', 'B', 'B'], 'c': ['C', 'C', 'C', 'A'], 'd': ['D', 'D', 'B', 'A']}, index=[0, 1, 2, 3])
df
created:
+----+-----+-----+-----+-----+ | | a | b | c | d | |----+-----+-----+-----+-----| | 0 | A | B | C | D | | 1 | A | D | C | D | | 2 | C | B | C | B | | 3 | B | B | A | A | +----+-----+-----+-----+-----+
(Printed using this.)
One way of dropping duplicates from each row, considering each row separately:
df = df.apply(lambda row: pd.Series(row).drop_duplicates(keep='first'),axis='columns')
using apply(), a lambda function, pd.Series(), & Series.drop_duplicates().
Shove all NaNs to the end of each row, using Shift NaNs to the end of their respective rows:
df.apply(lambda x : pd.Series(x[x.notnull()].values.tolist()+x[x.isnull()].values.tolist()),axis='columns')
Output:
+----+-----+-----+-----+-----+ | | 0 | 1 | 2 | 3 | |----+-----+-----+-----+-----| | 0 | A | B | C | D | | 1 | A | D | C | nan | | 2 | C | B | nan | nan | | 3 | B | A | nan | nan | +----+-----+-----+-----+-----+
Just as we wished.
Is there a more efficient way to do this? Perhaps with some built-in Pandas functions?
You can set 'keep=False' in the drop_duplicates() function to remove all the duplicate rows. For E.x, df. drop_duplicates(keep=False) .
The tail() method returns the last n rows. By default, the last 5 rows are returned. You can specify the number of rows.
To remove duplicates of only one or a subset of columns, specify subset as the individual column or list of columns that should be unique. To do this conditional on a different column's value, you can sort_values(colname) and specify keep equals either first or last .
You can stack
and then drop_duplicates
that way. Then we need to pivot with the help of a cumcount
level. The stack
preserves the order the values appear in along the rows and the cumcount
ensures that the NaN
will appear in the end.
df1 = df.stack().reset_index().drop(columns='level_1').drop_duplicates() df1['col'] = df1.groupby('level_0').cumcount() df1 = (df1.pivot(index='level_0', columns='col', values=0) .rename_axis(index=None, columns=None)) 0 1 2 3 0 A B C D 1 A D C NaN 2 C B NaN NaN 3 B A NaN NaN
Assuming 4 columns, let's see how a bunch of these methods compare as the number of rows grow. The map
and apply
solutions have a good advantage when things are small, but they become a bit slower than the more involved stack
+ drop_duplicates
+ pivot
solution as the DataFrame gets longer. Regardless, they all start to take a while for a large DataFrame.
import perfplot import pandas as pd import numpy as np def stack(df): df1 = df.stack().reset_index().drop(columns='level_1').drop_duplicates() df1['col'] = df1.groupby('level_0').cumcount() df1 = (df1.pivot(index='level_0', columns='col', values=0) .rename_axis(index=None, columns=None)) return df1 def apply_drop_dup(df): return pd.DataFrame.from_dict(df.apply(lambda x: x.drop_duplicates().tolist(), axis=1).to_dict(), orient='index') def apply_unique(df): return pd.DataFrame(df.apply(pd.Series.unique, axis=1).tolist()) def list_map(df): return pd.DataFrame(list(map(pd.unique, df.values))) perfplot.show( setup=lambda n: pd.DataFrame(np.random.choice(list('ABCD'), (n, 4)), columns=list('abcd')), kernels=[ lambda df: stack(df), lambda df: apply_drop_dup(df), lambda df: apply_unique(df), lambda df: list_map(df), ], labels=['stack', 'apply_drop_dup', 'apply_unique', 'list_map'], n_range=[2 ** k for k in range(18)], equality_check=lambda x,y: x.compare(y).empty, xlabel='~len(df)' )
Finally, if preserving the order in which the values originally appeared within each row is unimportant, you can use numpy
. To de-duplicate you sort then check for differences. Then create an output array that shifts values to the right. Because this method will always return 4 columns, we require a dropna
to match the other output in the case that every row has fewer than 4 unique values.
def with_numpy(df): arr = np.sort(df.to_numpy(), axis=1) r = np.roll(arr, 1, axis=1) r[:, 0] = np.NaN arr = np.where((arr != r), arr, np.NaN) # Move all NaN to the right. Credit @Divakar mask = pd.notnull(arr) justified_mask = np.flip(np.sort(mask, axis=1), 1) out = np.full(arr.shape, np.NaN, dtype=object) out[justified_mask] = arr[mask] return pd.DataFrame(out, index=df.index).dropna(how='all', axis='columns') with_numpy(df) # 0 1 2 3 #0 A B C D #1 A C D NaN #2 B C NaN NaN # B/c this method sorts, B before C #3 A B NaN NaN
perfplot.show( setup=lambda n: pd.DataFrame(np.random.choice(list('ABCD'), (n, 4)), columns=list('abcd')), kernels=[ lambda df: stack(df), lambda df: with_numpy(df), ], labels=['stack', 'with_numpy'], n_range=[2 ** k for k in range(3, 22)], # Lazy check to deal with string/NaN and irrespective of sort order. equality_check=lambda x, y: (np.sort(x.fillna('ZZ').to_numpy(), 1) == np.sort(y.fillna('ZZ').to_numpy(), 1)).all(), xlabel='len(df)' )
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With