I'd like to remove the lines in this data frame that:
a) contain NA
s across all columns. Below is my example data frame.
gene hsap mmul mmus rnor cfam 1 ENSG00000208234 0 NA NA NA NA 2 ENSG00000199674 0 2 2 2 2 3 ENSG00000221622 0 NA NA NA NA 4 ENSG00000207604 0 NA NA 1 2 5 ENSG00000207431 0 NA NA NA NA 6 ENSG00000221312 0 1 2 3 2
Basically, I'd like to get a data frame such as the following.
gene hsap mmul mmus rnor cfam 2 ENSG00000199674 0 2 2 2 2 6 ENSG00000221312 0 1 2 3 2
b) contain NA
s in only some columns, so I can also get this result:
gene hsap mmul mmus rnor cfam 2 ENSG00000199674 0 2 2 2 2 4 ENSG00000207604 0 NA NA 1 2 6 ENSG00000221312 0 1 2 3 2
Remove Rows with NA From R Dataframe. By using na. omit() , complete. cases() , rowSums() , and drop_na() methods you can remove rows that contain NA ( missing values) from R data frame.
First, if we want to exclude missing values from mathematical operations use the na. rm = TRUE argument. If you do not exclude these values most functions will return an NA . We may also desire to subset our data to obtain complete observations, those observations (rows) in our data that contain no missing data.
Also check complete.cases
:
> final[complete.cases(final), ] gene hsap mmul mmus rnor cfam 2 ENSG00000199674 0 2 2 2 2 6 ENSG00000221312 0 1 2 3 2
na.omit
is nicer for just removing all NA
's. complete.cases
allows partial selection by including only certain columns of the dataframe:
> final[complete.cases(final[ , 5:6]),] gene hsap mmul mmus rnor cfam 2 ENSG00000199674 0 2 2 2 2 4 ENSG00000207604 0 NA NA 1 2 6 ENSG00000221312 0 1 2 3 2
Your solution can't work. If you insist on using is.na
, then you have to do something like:
> final[rowSums(is.na(final[ , 5:6])) == 0, ] gene hsap mmul mmus rnor cfam 2 ENSG00000199674 0 2 2 2 2 4 ENSG00000207604 0 NA NA 1 2 6 ENSG00000221312 0 1 2 3 2
but using complete.cases
is quite a lot more clear, and faster.
Try na.omit(your.data.frame)
. As for the second question, try posting it as another question (for clarity).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With