Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Regression with Heteroskedasticity Corrected Standard Errors

Tags:

r

stata

I would like to find the R implementation that most closely resembles Stata output for fitting a Least Squares Regression function with Heteroskedastic Corrected Standard Errors. Specifically I would like the corrected standard errors to be in the "summary" and not have to do additional calculations for my initial round of hypothesis testing. I am looking for a solution that is as "clean" as what Eviews and Stata provide.

So far, using the "lmtest" package the best I can come up with is:

model <- lm(...)
coeftest(model, vcov = hccm) 

This gives me the output that I want, but it does not seem to be using "coeftest" for its stated purpose. I would also have to use the summary with the incorrect standard errors to read off the R^2 and F stat, etc. I feel that there should exist a "one line" solution to this problem given how dynamic R is.

Thanks

like image 610
JJJ Avatar asked Dec 08 '10 08:12

JJJ


People also ask

How does heteroskedasticity affect standard errors?

"Heteroscedasticity" makes it difficult to estimate the true standard deviation of the forecast errors. This can lead to confidence intervals that are too wide or too narrow (in particular they will be too narrow for out-of-sample predictions, if the variance of the errors is increasing over time).

Why do we use robust standard errors to correct for heteroskedasticity?

“Robust” standard errors is a technique to obtain unbiased standard errors of OLS coefficients under heteroscedasticity. Remember, the presence of heteroscedasticity violates the Gauss Markov assumptions that are necessary to render OLS the best linear unbiased estimator (BLUE).

How do you fix heteroskedasticity in regression?

Another way to fix heteroscedasticity is to use weighted regression. This type of regression assigns a weight to each data point based on the variance of its fitted value. What is this? Essentially, this gives small weights to data points that have higher variances, which shrinks their squared residuals.

How can heteroskedasticity be corrected?

Correcting for Heteroscedasticity One way to correct for heteroscedasticity is to compute the weighted least squares (WLS) estimator using an hypothesized specification for the variance. Often this specification is one of the regressors or its square.


3 Answers

I think you are on the right track with coeftest in package lmtest. Take a look at the sandwich package which includes this functionality and is designed to work hand in hand with the lmtest package you have already found.

> # generate linear regression relationship
> # with Homoskedastic variances
> x <- sin(1:100)
> y <- 1 + x + rnorm(100)
> ## model fit and HC3 covariance
> fm <- lm(y ~ x)
> vcovHC(fm)
            (Intercept)           x
(Intercept) 0.010809366 0.001209603
x           0.001209603 0.018353076
> coeftest(fm, vcov. = vcovHC)

t test of coefficients:

            Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  1.01973    0.10397  9.8081 3.159e-16 ***
x            0.93992    0.13547  6.9381 4.313e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

To get the F test, look at function waldtest():

> waldtest(fm, vcov = vcovHC)
Wald test

Model 1: y ~ x
Model 2: y ~ 1
  Res.Df Df      F    Pr(>F)    
1     98                        
2     99 -1 48.137 4.313e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

You could always cook up a simple function to combine these two for you if you wanted the one-liner...

There are lots of examples in the Econometric Computing with HC and HAC Covariance Matrix Estimators vignette that comes with the sandwich package of linking lmtest and sandwich to do what you want.

Edit: A one-liner could be as simple as:

mySummary <- function(model, VCOV) {
    print(coeftest(model, vcov. = VCOV))
    print(waldtest(model, vcov = VCOV))
}

Which we can use like this (on the examples from above):

> mySummary(fm, vcovHC)

t test of coefficients:

            Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  1.01973    0.10397  9.8081 3.159e-16 ***
x            0.93992    0.13547  6.9381 4.313e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Wald test

Model 1: y ~ x
Model 2: y ~ 1
  Res.Df Df      F    Pr(>F)    
1     98                        
2     99 -1 48.137 4.313e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
like image 138
Gavin Simpson Avatar answered Oct 05 '22 17:10

Gavin Simpson


I found an R function that does exactly what you are looking for. It gives you robust standard errors without having to do additional calculations. You run summary() on an lm.object and if you set the parameter robust=T it gives you back Stata-like heteroscedasticity consistent standard errors.

summary(lm.object, robust=T)

You can find the function on https://economictheoryblog.com/2016/08/08/robust-standard-errors-in-r/

like image 23
Sandra Lopez Avatar answered Oct 05 '22 19:10

Sandra Lopez


There is now a one-line solution using lm_robust from the estimatr package, which you can install from CRAN install.packages(estimatr).

> library(estimatr)
> lmro <- lm_robust(mpg ~ hp, data = mtcars, se_type = "stata")
> summary(lmro)

Call:
lm_robust(formula = mpg ~ hp, data = mtcars, se_type = "stata")

Standard error type:  HC1 

Coefficients:
            Estimate Std. Error  Pr(>|t|) CI Lower CI Upper DF
(Intercept) 30.09886    2.07661 4.348e-15 25.85785 34.33987 30
hp          -0.06823    0.01356 2.132e-05 -0.09592 -0.04053 30

Multiple R-squared:  0.6024 ,   Adjusted R-squared:  0.5892 
F-statistic: 45.46 on 1 and 30 DF,  p-value: 1.788e-07

You can also get tidy output:

> tidy(lmro)
         term    estimate std.error      p.value    ci.lower
1 (Intercept) 30.09886054 2.0766149 4.347723e-15 25.85784704
2          hp -0.06822828 0.0135604 2.131785e-05 -0.09592231
     ci.upper df outcome
1 34.33987404 30     mpg
2 -0.04053425 30     mpg

The "stata" standard errors default to "HC1" standard errors, which are the default rob standard errors in Stata. You can also get "classical", "HC0", "HC1", "HC2", "HC3" and various clustered standard errors as well (including those that match Stata).

like image 22
luke.sonnet Avatar answered Oct 05 '22 17:10

luke.sonnet