I have a solution that can be parallelized, but I don't (yet) have experience with hadoop/nosql, and I'm not sure which solution is best for my needs. In theory, if I had unlimited CPUs, my results should return back instantaneously. So, any help would be appreciated. Thanks!
Here's what I have:
I can't precompute my aggregated values, but since each key is independent, this should be easily scalable. Currently, I have this data in a postgres database, where each dataset is in its own partition.
As a proof of concept I tried out hadoop:
From my crude proof-of-concept, I can see this will scale nicely, but I can see hadoop/hdfs has latency I've read that that it's generally not used for real time querying (even though I'm ok with returning results back to users in 5 seconds).
Any suggestion on how I should approach this? I was thinking of trying HBase next to get a feel for that. Should I instead look at Hive? Cassandra? Voldemort?
thanks!
Hive or Pig don't seem like they would help you. Essentially each of them compiles down to one or more map/reduce jobs, so the response cannot be within 5 seconds
HBase may work, although your infrastructure is a bit small for optimal performance. I don't understand why you can't pre-compute summary statistics for each column. You should look up computing running averages so that you don't have to do heavy weight reduces.
check out http://en.wikipedia.org/wiki/Standard_deviation
stddev(X) = sqrt(E[X^2]- (E[X])^2)
this implies that you can get the stddev of AB by doing
sqrt(E[AB^2]-(E[AB])^2). E[AB^2] is (sum(A^2) + sum(B^2))/(|A|+|B|)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With