What is the best way to read from a csv, but only one specific column, like title
?
ID | date| title |
-------------------
1| 2013| abc |
2| 2012| cde |
The column should then be stored in an array like this:
data = ["abc", "cde"]
This is what I have so far, with pandas:
data = pd.read_csv("data.csv", index_col=2)
I've looked into this thread. I still get an IndexError: list index out of range
.
EDIT:
It's not a table, it's comma seperated like this:
ID,date,title
1,2013,abc
2,2012,cde
One option is just to read in the entire csv, then select a column:
data = pd.read_csv("data.csv")
data['title'] # as a Series
data['title'].values # as a numpy array
As @dawg suggests, you can use the usecols argument, if you also use the squeeze argument to avoid some hackery flattening the values array...
In [11]: titles = pd.read_csv("data.csv", sep=',', usecols=['title'], squeeze=True)
In [12]: titles # Series
Out[12]:
0 abc
1 cde
Name: title, dtype: object
In [13]: titles.values # numpy array
Out[13]: array(['abc', 'cde'], dtype=object)
You can do something like this:
>>> import pandas as pd
>>> from StringIO import StringIO
>>> txt='''\
... ID,date,title
... 1,2013,abc
... 2,2012,cde'''
>>> data=pd.read_csv(StringIO(txt), usecols=['title']).T.values.tolist()[0]
>>> data
['abc', 'cde']
Or, assuming that you have some blanks:
txt='''\
ID,date,title
1,2013,abc
2,2012,cde
3,2014,
4,2015,fgh'''
table=pd.read_csv(StringIO(txt), usecols=['title'])
print table
title
0 abc
1 cde
2
3 fgh
data=pd.read_csv(StringIO(txt), usecols=['title']).T.values.tolist()[0]
print data
['abc', 'cde', ' ', 'fgh']
Or if you have variable number of data fields:
txt='''\
ID,date,title
1,2013,
2,2012,cde
3
4,2015,fgh'''
print pd.read_csv(StringIO(txt), usecols=['title'])
title
0 NaN
1 cde
2 NaN
3 fgh
print pd.read_csv(StringIO(txt), usecols=['title']).T.values.tolist()[0]
[nan, 'cde', nan, 'fgh']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With