I am interested in using Rcpp to create a data frame with a variable number of columns. By that, I mean that the number of columns will be known only at runtime. Some of the columns will be standard, but others will be repeated n times where n is the number of features I am considering in a particular run.
I am aware that I can create a data frame as follows:
IntegerVector i1(3); i1[0]=4;i1[1]=2134;i1[2]=3453;
IntegerVector i2(3); i2[0]=4123;i2[1]=343;i2[2]=99123;
DataFrame df = DataFrame::create(Named("V1")=i1,Named("V2")=i2);
but in this case it is assumed that the number of columns is 2.
To simplify the explanation of what I need, assume that I would like pass a SEXP variable specifying the number of columns to create in the variable part. Something like:
RcppExport SEXP myFunc(SEXP n, SEXP <other stuff>)
IntegerVector i1(3); <compute i1>
IntegerVector i2(3); <compute i2>
for(int i=0;i<n;i++){compute vi}
DataFrame df = DataFrame::create(Named("Num")=i1,Named("ID")=i2,...,other columns v1 to vn);
where n is passed as an argument. The final data frame in R would look like
Num ID V1 ... Vn
1 2 5 'aasda'
...
(In reality, the column names will not be of the form "Vx", but they will be known at runtime.) In other words, I cannot use a static list of
Named()=...
since the number will change.
I have tried skipping the "Named()" part of the constructor and then naming the columns at the end, but the results are junk.
Can this be done?
If I understand your question correctly, it seems like it would be easiest to take advantage of the DataFrame
constructor that takes a List
as an argument (since the size of a List
can be specified directly), and set the names of your columns via .attr("names")
and a CharacterVector
:
#include <Rcpp.h>
// [[Rcpp::export]]
Rcpp::DataFrame myFunc(int n, Rcpp::List lst,
Rcpp::CharacterVector Names = Rcpp::CharacterVector::create()) {
Rcpp::List tmp(n + 2);
tmp[0] = Rcpp::IntegerVector(3);
tmp[1] = Rcpp::IntegerVector(3);
Rcpp::CharacterVector lnames = Names.size() < lst.size() ?
lst.attr("names") : Names;
Rcpp::CharacterVector names(n + 2);
names[0] = "Num";
names[1] = "ID";
for (std::size_t i = 0; i < n; i++) {
// tmp[i + 2] = do_something(lst[i]);
tmp[i + 2] = lst[i];
if (std::string(lnames[i]).compare("") != 0) {
names[i + 2] = lnames[i];
} else {
names[i + 2] = "V" + std::to_string(i);
}
}
Rcpp::DataFrame result(tmp);
result.attr("names") = names;
return result;
}
There's a little extra going on there to allow the Names
vector to be optional - e.g. if you just use a named list you can omit the third argument.
lst1 <- list(1L:3L, 1:3 + .25, letters[1:3])
##
> myFunc(length(lst1), lst1, c("V1", "V2", "V3"))
# Num ID V1 V2 V3
#1 0 0 1 1.25 a
#2 0 0 2 2.25 b
#3 0 0 3 3.25 c
lst2 <- list(
Column1 = 1L:3L,
Column2 = 1:3 + .25,
Column3 = letters[1:3],
Column4 = LETTERS[1:3])
##
> myFunc(length(lst2), lst2)
# Num ID Column1 Column2 Column3 Column4
#1 0 0 1 1.25 a A
#2 0 0 2 2.25 b B
#3 0 0 3 3.25 c C
Just be aware of the 20-length limit for this signature of the DataFrame
constructor, as pointed out by @hrbrmstr.
It's an old question, but I think more people are struggling with this, like me. Starting from the other answers here, I arrived at a solution that isn't limited by the 20 column limit of the DataFrame constructor:
// [[Rcpp::plugins(cpp11)]]
#include <Rcpp.h>
#include <string>
#include <iostream>
using namespace Rcpp;
// [[Rcpp::export]]
List variableColumnList(int numColumns=30) {
List retval;
for (int i=0; i<numColumns; i++) {
std::ostringstream colName;
colName << "V" << i+1;
retval.push_back( IntegerVector::create(100*i, 100*i + 1),colName.str());
}
return retval;
}
// [[Rcpp::export]]
DataFrame variableColumnListAsDF(int numColumns=30) {
Function asDF("as.data.frame");
return asDF(variableColumnList(numColumns));
}
// [[Rcpp::export]]
DataFrame variableColumnListAsTibble(int numColumns=30) {
Function asTibble("tbl_df");
return asTibble(variableColumnList(numColumns));
}
So build a C++ List
first by pushing columns onto an empty List
. (I generate the values and the column names on the fly here.) Then, either return that as an R list
, or use one of two helper functions to convert them into a data.frame
or tbl_df
. One could do the latter from R, but I find this cleaner.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With