I am testing if a ray intersects a triangle. For the time being, I'm using the following code to test if there is an intersection between a triangle, and the ray from origin to the midpoint of the triangle:
Ray<float> *ray = new Ray<float>(Vec3<float>(0), chosenTriangle->GetTriangleMidpoint());
Along side is the Vec3
object which I'm using to store the vector operations:
template<typename T>
class Vec3
{
public:
T x, y, z;
Vec3() : x(T(0)), y(T(0)), z(T(0)) { }
Vec3(T xx) : x(xx), y(xx), z(xx) { }
Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
Vec3& normalize()
{
T nor2 = length2();
if (nor2 > 0) {
T invNor = 1 / sqrt(nor2);
x *= invNor, y *= invNor, z *= invNor;
}
return *this;
}
Vec3<T> operator * (const T &f) const { return Vec3<T>(x * f, y * f, z * f); }
Vec3<T> operator * (const Vec3<T> &v) const { return Vec3<T>(x * v.x, y * v.y, z * v.z); }
T dot(const Vec3<T> &v) const { return x * v.x + y * v.y + z * v.z; }
Vec3<T> operator - (const Vec3<T> &v) const { return Vec3<T>(x - v.x, y - v.y, z - v.z); }
Vec3<T> operator + (const Vec3<T> &v) const { return Vec3<T>(x + v.x, y + v.y, z + v.z); }
bool operator == (const Vec3<T> &v) { return x == v.x && y == v.y && z == v.z; }
Vec3<T> operator - () const { return Vec3<T>(-x, -y, -z); }
T length2() const { return x * x + y * y + z * z; }
T length() const { return sqrt(length2()); }
Vec3<T> CrossProduct(Vec3<T> other)
{
return Vec3<T>(y*other.z - other.y*z, x*other.z - z*other.x, x*other.y - y*other.x);
}
friend std::ostream & operator << (std::ostream &os, const Vec3<T> &v)
{
os << "[" << v.x << " " << v.y << " " << v.z << "]";
return os;
}
The chosen triangle and the ray have the following values, where vertA
, vertB
and vertC
are the vertices of the triangle and are found in an object which represents a triangle.
The code which computes if there is an intersection between a specified ray and an intersection is the following. This code is found inside the triangle object method where vertA
, vertB
and vertC
are global variables.
bool CheckRayIntersection(Vec3<T> &o, Vec3<T> &d)
{
Vec3<T> e1 = vertB - vertA;
Vec3<T> e2 = vertC - vertA;
Vec3<T> p = d.CrossProduct(e2);
T a = e1.dot(p);
if(a == 0)
return false;
float f = 1.0f/a;
Vec3<T> s = o - vertA;
T u = f * s.dot(p);
if(u < 0.0f || u > 1.0f)
return false;
Vec3<T> q = s.CrossProduct(e1);
T v = f * d.dot(q);
if(v < 0.0f || u+v > 1.0f)
return false;
T t = f * e2.dot(q);
return (t >= 0);
}
I still get a false returned from the function, but I'm presuming it should return a true since a vector passing through the midpoint of the triangle should intersect the triangle at the midpoint. Can anybody enlighten me what's wrong in my code? Or is the returned false actually correct?
The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the intersection of a ray and a triangle in three dimensions without needing precomputation of the plane equation of the plane containing the triangle.
The ray can intersect the triangle or miss it. If the ray is parallel to the triangle there is no possible intersection. This situation occurs when the normal of the triangle and the ray direction is perpendicular (and the dot product of these two vectors is 0).
To find the intersection between a line and a triangle in 3D, follow this approach: Compute the plane supporting the triangle, Intersect the line with the plane supporting the triangle: If there is no intersection, then there is no intersection with the triangle.
With your data, I managed to get consistent results by having the ray direction normalized (this is the only apparent change in the code).
Here is the code implementation (I used the paper as reference, and it's not very optimized) :
struct quickVect
{
float x,y,z;
float l;
};
#define DOT(v1,v2) (v1.x*v2.x + v1.y*v2.y+v1.z*v2.z)
#define CROSS(rez,v1,v2) \
rez.x = v1.y*v2.z - v1.z*v2.y; \
rez.y = v1.z*v2.x - v1.x*v2.z; \
rez.z = v1.x*v2.y - v1.y*v2.x;
#define SUB(rez,v1,v2) \
rez.x = v1.x-v2.x; \
rez.y = v1.y-v2.y; \
rez.z = v1.z-v2.z;
#define LENGTH(v) (sqrtf(v.x* v.x + v.y*v.y + v.z*v.z))
#define NORMALIZE(v) \
v.l = LENGTH(v); \
v.x = v.x / v.l; \
v.y = v.y / v.l; \
v.z = v.z / v.l;
#define EPSILON 0.000001f
//#define TEST_CULL
bool testIntersection(quickVect& v1, quickVect& v2, quickVect& v3, quickVect& orig,quickVect& dir)
{
quickVect e1,e2,pvec,qvec,tvec;
SUB(e1,v2,v1);
SUB(e2,v3,v1);
CROSS(pvec,dir,e2);
NORMALIZE(dir);
//NORMALIZE(pvec);
float det = DOT(pvec,e1);
#ifdef TEST_CULL
if (det <EPSILON)
{
return false;
}
SUB(tvec,orig,v1);
float u = DOT(tvec,pvec);
if (u < 0.0 || u > det)
{
return false;
}
CROSS(qvec,tvec,e1);
float v = DOT(dir,qvec);
if (v < 0.0f || v + u > det)
{
return false;
}
#else
if (det < EPSILON && det > -EPSILON )
{
return false;
}
float invDet = 1.0f / det;
SUB(tvec,orig,v1);
// NORMALIZE(tvec);
float u = invDet * DOT(tvec,pvec);
if (u <0.0f || u > 1.0f)
{
return false;
}
CROSS(qvec,tvec,e1);
// NORMALIZE(qvec);
float v = invDet* DOT(qvec,dir);
if (v < 0.0f || u+v > 1.0f)
{
return false;
}
#endif
return true;
}
Direct translation of MichaelCMS's answer for use with glm.
// must normalize direction of ray
bool intersectRayTri(Tri& tri, glm::vec3 o, glm::vec3 n) {
glm::vec3 e1, e2, pvec, qvec, tvec;
e1 = tri.v2 - tri.v1;
e2 = tri.v3 - tri.v1;
pvec = glm::cross(n, e2);
n = glm::normalize(n);
//NORMALIZE(pvec);
float det = glm::dot(pvec, e1);
if (det != 0)
{
float invDet = 1.0f / det;
tvec = o - tri.v1;
// NORMALIZE(tvec);
float u = invDet * glm::dot(tvec, pvec);
if (u < 0.0f || u > 1.0f)
{
return false;
}
qvec = glm::cross(tvec, e1);
// NORMALIZE(qvec);
float v = invDet * glm::dot(qvec, n);
if (v < 0.0f || u + v > 1.0f)
{
return false;
}
}
else return false;
return true; // det != 0 and all tests for false intersection fail
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With