I want to cross-join two data tables without evaluating the full cross join, using a ranging criterion in the process. In essence, I would like CJ with filtering/ranging expression.
Can someone suggest a high performing approach avoiding the full cross join?
See test example below doing the job with the evil full cross join.
library(data.table)
# Test data.
dt1 <- data.table(id1=1:10, D=2*(1:10), key="id1")
dt2 <- data.table(id2=21:23, D1=c(5, 7, 10), D2=c(9, 12, 16), key="id2")
# Desired filtered cross-join data table by hand: D1 <= D & D <= D2.
dtfDesired <- data.table(
id1=c(3, 4, 4, 5, 6, 5, 6, 7, 8)
, id2=c(rep(21, 2), rep(22, 3), rep(23, 4))
, D1=c(rep(5, 2), rep(7, 3), rep(10, 4))
, D=c(6, 8, 8, 10, 12, 10, 12, 14, 16)
, D2=c(rep(9, 2), rep(12, 3), rep(16, 4))
)
setkey(dtfDesired, id1, id2)
# My "inefficient" programmatic attempt with full cross join.
fullCJ <- function(dt1, dt2) {
# Full cross-product: NOT acceptable with real data!
dtCrossAll <- CJ(dt1$id1, dt2$id2)
setnames(dtCrossAll, c("id1", "id2"))
# Merge all columns.
dtf <- merge(dtCrossAll, dt1, by="id1")
dtf <- merge(dtf, dt2, by="id2")
setkey(dtf, id1, id2)
# Reorder columns for convenience.
setcolorder(dtf, c("id1", "id2", "D1", "D", "D2"))
# Finally, filter the cases I want.
dtf[D1 <= D & D <= D2, ]
}
dtf <- fullCJ(dt1, dt2)
# Print results.
print(dt1)
print(dt2)
print(dtfDesired)
all.equal(dtf, dtfDesired)
Test data output
> # Print results.
> print(dt1)
id1 D
1: 1 2
2: 2 4
3: 3 6
4: 4 8
5: 5 10
6: 6 12
7: 7 14
8: 8 16
9: 9 18
10: 10 20
> print(dt2)
id2 D1 D2
1: 21 5 9
2: 22 7 12
3: 23 10 16
> print(dtfDesired)
id1 id2 D1 D D2
1: 3 21 5 6 9
2: 4 21 5 8 9
3: 4 22 7 8 12
4: 5 22 7 10 12
5: 5 23 10 10 16
6: 6 22 7 12 12
7: 6 23 10 12 16
8: 7 23 10 14 16
9: 8 23 10 16 16
> all.equal(dtf, dtfDesired)
[1] TRUE
So now the challenge is to write the filtered cross join in a way that can scale to millions of rows!
Below are a collection of alternative implementations including those suggested in answers and comments.
# My "inefficient" programmatic attempt looping manually.
manualIter <- function(dt1, dt2) {
id1Match <- NULL; id2Match <- NULL; dtf <- NULL;
for (i1 in seq_len(nrow(dt1))) {
# Find matches in dt2 of this dt1 row.
row1 <- dt1[i1, ]
id1 <- row1$id1
D <- row1$D
dt2Match <- dt2[D1 <= D & D <= D2, ]
nMatches <- nrow(dt2Match)
if (0 < nMatches) {
id1Match <- c(id1Match, rep(id1, nMatches))
id2Match <- c(id2Match, dt2Match$id2)
}
}
# Build the return data.table for the matching ids.
dtf <- data.table(id1=id1Match, id2=id2Match)
dtf <- merge(dtf, dt1, by="id1")
dtf <- merge(dtf, dt2, by="id2")
setkey(dtf, id1, id2)
# Reorder columns for convenience & consistency.
setcolorder(dtf, c("id1", "id2", "D1", "D", "D2"))
return(dtf)
}
dtJoin1 <- function(dt1, dt2) {
dtf <- dt1[, dt2[D1 <= D & D <= D2, list(id2=id2)], by=id1]
dtf <- merge(dtf, dt1, by="id1")
dtf <- merge(dtf, dt2, by="id2")
setkey(dtf, id1, id2)
setcolorder(dtf, c("id1", "id2", "D1", "D", "D2")) # Reorder columns for convenience & consistency.
return(dtf)
}
dtJoin2 <- function(dt1, dt2) {
dtf <- dt2[, dt1[D1 <= D & D <= D2, list(id1=id1, D1=D1, D=D, D2=D2)], by=id2]
setkey(dtf, id1, id2)
setcolorder(dtf, c("id1", "id2", "D1", "D", "D2")) # Reorder columns for convenience & consistency.
return(dtf)
}
# Install Bioconductor IRanges (see bioTreeRange below).
source("http://bioconductor.org/biocLite.R")
biocLite("IRanges")
# Solution using Bioconductor IRanges.
bioTreeRange <- function(dt1, dt2) {
require(IRanges)
ir1 <- IRanges(dt1$D, width=1L)
ir2 <- IRanges(dt2$D1, dt2$D2)
olaps <- findOverlaps(ir1, ir2, type="within")
dtf <- cbind(dt1[queryHits(olaps)], dt2[subjectHits(olaps)])
setkey(dtf, id1, id2)
setcolorder(dtf, c("id1", "id2", "D1", "D", "D2")) # Reorder columns for convenience.
return(dtf)
}
And now below is a little benchmark on a bigger data set 2-3 orders of magnitude smaller than my real underlying scenario. The real scenario fails on the full cross-join huge memory allocation.
set.seed(1)
n1 <- 10000
n2 <- 1000
dtbig1 <- data.table(id1=1:n1, D=1:n1, key="id1")
dtbig2 <- data.table(id2=1:n2, D1=sort(sample(1:n1, n2)), key="id2")
dtbig2$D2 <- with(dtbig2, D1 + 100)
library("microbenchmark")
mbenchmarkRes <- microbenchmark(
fullCJRes <- fullCJ(dtbig1, dtbig2)
, manualIterRes <- manualIter(dtbig1, dtbig2)
, dtJoin1Res <- dtJoin1(dtbig1, dtbig2)
, dtJoin2Res <- dtJoin2(dtbig1, dtbig2)
, bioTreeRangeRes <- bioTreeRange(dtbig1, dtbig2)
, times=3, unit="s", control=list(order="inorder", warmup=1)
)
mbenchmarkRes$expr <- c("fullCJ", "manualIter", "dtJoin1", "dtJoin2", "bioTreeRangeRes") # Shorten names for better display.
# Print microbenchmark
print(mbenchmarkRes, order="median")
And now the current benchmark results I got on my machine:
> print(mbenchmarkRes, order="median")
Unit: seconds
expr min lq median uq max neval
bioTreeRangeRes 0.05833279 0.05843753 0.05854227 0.06099377 0.06344527 3
dtJoin2 1.20519664 1.21583650 1.22647637 1.23606216 1.24564796 3
fullCJ 4.00370434 4.03572702 4.06774969 4.17001658 4.27228347 3
dtJoin1 8.02416333 8.03504136 8.04591938 8.20015977 8.35440016 3
manualIter 8.69061759 8.69716448 8.70371137 8.76859060 8.83346982 3
gtools
and gplots
.Recently, overlap joins are implemented in data.table
. This is a special case where dt1
's `start and end points are identical. You can grab the latest version from the github project page to try this out:
require(data.table) ## 1.9.3+
dt1[, DD := D] ## duplicate column D to create intervals
setkey(dt2, D1,D2) ## key needs to be set for 2nd argument
foverlaps(dt1, dt2, by.x=c("D", "DD"), by.y=key(dt2), nomatch=0L)
# id2 D1 D2 id1 D DD
# 1: 21 5 9 3 6 6
# 2: 21 5 9 4 8 8
# 3: 22 7 12 4 8 8
# 4: 22 7 12 5 10 10
# 5: 23 10 16 5 10 10
# 6: 22 7 12 6 12 12
# 7: 23 10 16 6 12 12
# 8: 23 10 16 7 14 14
# 9: 23 10 16 8 16 16
Here's the results benchmarking on the same data you've shown in your post:
# Unit: seconds
# expr min lq median uq max neval
# olaps 0.03600603 0.03971068 0.04341533 0.04857602 0.05373671 3
# bioTreeRangeRes 0.11356837 0.11673968 0.11991100 0.12499391 0.13007681 3
# dtJoin2 2.61679908 2.70327940 2.78975971 2.86864832 2.94753693 3
# fullCJ 4.45173294 4.75271285 5.05369275 5.08333291 5.11297307 3
# dtJoin1 16.51898878 17.39207632 18.26516387 18.60092303 18.93668220 3
# manualIter 29.36023340 30.13354967 30.90686594 33.55910653 36.21134712 3
where dt_olaps
is:
dt_olaps <- function(dt1, dt2) {
dt1[, DD := D]
setkey(dt2, D1,D2)
foverlaps(dt1, dt2, by.x=c("D","DD"), by.y=key(dt2), nomatch=0L)
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With