Previously asked similar question but somehow I'm not finding my way out, attempting again with another example.
The code as a starting point (a bit trimmed) is available at https://ideone.com/zkQcIU.
(it has some issue recognizing Microsoft.FSharp.Core.Result
type, not sure why)
Essentially all operations have to be pipelined with the previous function feeding the result to the next one. The operations have to be async and they should return error to the caller in case an exception occurred.
The requirement is to give the caller either result or fault. All functions return a Tuple populated with either Success type Article
or Failure with type Error
object having descriptive code
and message
returned from the server.
Will appreciate a working example around my code both for the callee and the caller in an answer.
Callee Code
type Article = {
name: string
}
type Error = {
code: string
message: string
}
let create (article: Article) : Result<Article, Error> =
let request = WebRequest.Create("http://example.com") :?> HttpWebRequest
request.Method <- "GET"
try
use response = request.GetResponse() :?> HttpWebResponse
use reader = new StreamReader(response.GetResponseStream())
use memoryStream = new MemoryStream(Encoding.UTF8.GetBytes(reader.ReadToEnd()))
Ok ((new DataContractJsonSerializer(typeof<Article>)).ReadObject(memoryStream) :?> Article)
with
| :? WebException as e ->
use reader = new StreamReader(e.Response.GetResponseStream())
use memoryStream = new MemoryStream(Encoding.UTF8.GetBytes(reader.ReadToEnd()))
Error ((new DataContractJsonSerializer(typeof<Error>)).ReadObject(memoryStream) :?> Error)
Rest of the chained methods - Same signature and similar bodies. You can actually reuse the body of create
for update
, upload
, and publish
to be able to test and compile code.
let update (article: Article) : Result<Article, Error>
// body (same as create, method <- PUT)
let upload (article: Article) : Result<Article, Error>
// body (same as create, method <- PUT)
let publish (article: Article) : Result<Article, Error>
// body (same as create, method < POST)
Caller Code
let chain = create >> Result.bind update >> Result.bind upload >> Result.bind publish
match chain(schemaObject) with
| Ok article -> Debug.WriteLine(article.name)
| Error error -> Debug.WriteLine(error.code + ":" + error.message)
Edit
Based on the answer and matching it with Scott's implementation (https://i.stack.imgur.com/bIxpD.png), to help in comparison and in better understanding.
let bind2 (switchFunction : 'a -> Async<Result<'b, 'c>>) =
fun (asyncTwoTrackInput : Async<Result<'a, 'c>>) -> async {
let! twoTrackInput = asyncTwoTrackInput
match twoTrackInput with
| Ok s -> return! switchFunction s
| Error err -> return Error err
}
Edit 2 Based on F# implementation of bind
let bind3 (binder : 'a -> Async<Result<'b, 'c>>) (asyncResult : Async<Result<'a, 'c>>) = async {
let! result = asyncResult
match result with
| Error e -> return Error e
| Ok x -> return! binder x
}
Take a look at the Suave source code, and specifically the WebPart.bind
function. In Suave, a WebPart is a function that takes a context (a "context" is the current request and the response so far) and returns a result of type Async<context option>
. The semantics of chaining these together are that if the async returns None
, the next step is skipped; if it returns Some value
, the next step is called with value
as the input. This is pretty much the same semantics as the Result
type, so you could almost copy the Suave code and adjust it for Result instead of Option. E.g., something like this:
module AsyncResult
let bind (f : 'a -> Async<Result<'b, 'c>>) (a : Async<Result<'a, 'c>>) : Async<Result<'b, 'c>> = async {
let! r = a
match r with
| Ok value ->
let next : Async<Result<'b, 'c>> = f value
return! next
| Error err -> return (Error err)
}
let compose (f : 'a -> Async<Result<'b, 'e>>) (g : 'b -> Async<Result<'c, 'e>>) : 'a -> Async<Result<'c, 'e>> =
fun x -> bind g (f x)
let (>>=) a f = bind f a
let (>=>) f g = compose f g
Now you can write your chain as follows:
let chain = create >=> update >=> upload >=> publish
let result = chain(schemaObject) |> Async.RunSynchronously
match result with
| Ok article -> Debug.WriteLine(article.name)
| Error error -> Debug.WriteLine(error.code + ":" + error.message)
Caution: I haven't been able to verify this code by running it in F# Interactive, since I don't have any examples of your create/update/etc. functions. It should work, in principle — the types all fit together like Lego building blocks, which is how you can tell that F# code is probably correct — but if I've made a typo that the compiler would have caught, I don't yet know about it. Let me know if that works for you.
Update: In a comment, you asked whether you need to have both the >>=
and >=>
operators defined, and mentioned that you didn't see them used in the chain
code. I defined both because they serve different purposes, just like the |>
and >>
operators serve different purposes. >>=
is like |>
: it passes a value into a function. While >=>
is like >>
: it takes two functions and combines them. If you would write the following in a non-AsyncResult context:
let chain = step1 >> step2 >> step3
Then that translates to:
let asyncResultChain = step1AR >=> step2AR >=> step3AR
Where I'm using the "AR" suffix to indicate versions of those functions that return an Async<Result<whatever>>
type. On the other hand, if you had written that in a pass-the-data-through-the-pipeline style:
let result = input |> step1 |> step2 |> step3
Then that would translate to:
let asyncResult = input >>= step1AR >>= step2AR >>= step3AR
So that's why you need both the bind
and compose
functions, and the operators that correspond to them: so that you can have the equivalent of either the |>
or the >>
operators for your AsyncResult values.
BTW, the operator "names" that I picked (>>=
and >=>
), I did not pick randomly. These are the standard operators that are used all over the place for the "bind" and "compose" operations on values like Async, or Result, or AsyncResult. So if you're defining your own, stick with the "standard" operator names and other people reading your code won't be confused.
Update 2: Here's how to read those type signatures:
'a -> Async<Result<'b, 'c>>
This is a function that takes type A, and returns an Async
wrapped around a Result
. The Result
has type B as its success case, and type C as its failure case.
Async<Result<'a, 'c>>
This is a value, not a function. It's an Async
wrapped around a Result
where type A is the success case, and type C is the failure case.
So the bind
function takes two parameters:
And it returns:
Looking at those type signatures, you can already start to get an idea of what the bind
function will do. It will take that value that's either A or C, and "unwrap" it. If it's C, it will produce an "either B or C" value that's C (and the function won't need to be called). If it's A, then in order to convert it to an "either B or C" value, it will call the f
function (which takes an A).
All this happens within an async context, which adds an extra layer of complexity to the types. It might be easier to grasp all this if you look at the basic version of Result.bind
, with no async involved:
let bind (f : 'a -> Result<'b, 'c>) (a : Result<'a, 'c>) =
match a with
| Ok val -> f val
| Error err -> Error err
In this snippet, the type of val
is 'a
, and the type of err
is 'c
.
Final update: There was one comment from the chat session that I thought was worth preserving in the answer (since people almost never follow chat links). Developer11 asked,
... if I were to ask you what
Result.bind
in my example code maps to your approach, can we rewrite it ascreate >> AsyncResult.bind update
? It worked though. Just wondering i liked the short form and as you said they have a standard meaning? (in haskell community?)
My reply was:
Yes. If the
>=>
operator is properly written, thenf >=> g
will always be equivalent tof >> bind g
. In fact, that's precisely the definition of thecompose
function, though that might not be immediately obvious to you becausecompose
is written asfun x -> bind g (f x)
rather than asf >> bind g
. But those two ways of writing the compose function would be exactly equivalent. It would probably be very instructive for you to sit down with a piece of paper and draw out the function "shapes" (inputs & outputs) of both ways of writing compose.
Why do you want to use Railway Oriented Programming here? If you just want to run a sequence of operations and return information about the first exception that occurs, then F# already provides a language support for this using exceptions. You do not need Railway Oriented Programming for this. Just define your Error
as an exception:
exception Error of code:string * message:string
Modify the code to throw the exception (also note that your create
function takes article
but does not use it, so I deleted that):
let create () = async {
let ds = new DataContractJsonSerializer(typeof<Error>)
let request = WebRequest.Create("http://example.com") :?> HttpWebRequest
request.Method <- "GET"
try
use response = request.GetResponse() :?> HttpWebResponse
use reader = new StreamReader(response.GetResponseStream())
use memoryStream = new MemoryStream(Encoding.UTF8.GetBytes(reader.ReadToEnd()))
return ds.ReadObject(memoryStream) :?> Article
with
| :? WebException as e ->
use reader = new StreamReader(e.Response.GetResponseStream())
use memoryStream = new MemoryStream(Encoding.UTF8.GetBytes(reader.ReadToEnd()))
return raise (Error (ds.ReadObject(memoryStream) :?> Error)) }
And then you can compose functions just by sequencing them in async
block using let!
and add exception handling:
let main () = async {
try
let! created = create ()
let! updated = update created
let! uploaded = upload updated
Debug.WriteLine(uploaded.name)
with Error(code, message) ->
Debug.WriteLine(code + ":" + message) }
If you wanted more sophisticated exception handling, then Railway Oriented Programming might be useful and there is certainly a way of integrating it with async
, but if you just want to do what you described in your question, then you can do that much more easily with just standard F#.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With