Let's say our initial data frame looks like this:
df1 = data.frame(Index=c(1:6),A=c(1:6),B=c(1,2,3,NA,NA,NA),C=c(1,2,3,NA,NA,NA))
> df1
  Index A  B  C
1     1 1  1  1
2     2 2  2  2
3     3 3  3  3
4     4 4 NA NA
5     5 5 NA NA
6     6 6 NA NA
Another data frame contains new information for col B and C
df2 = data.frame(Index=c(4,5,6),B=c(4,4,4),C=c(5,5,5))
> df2
  Index B C
1     4 4 5
2     5 4 5
3     6 4 5
How can you update the missing values in df1 so it looks like this:
  Index A B C
1     1 1 1 1
2     2 2 2 2
3     3 3 3 3
4     4 4 4 5
5     5 5 4 5
6     6 6 4 5
My attempt:
library(dplyr)
> full_join(df1,df2)
Joining by: c("Index", "B", "C")
  Index  A  B  C
1     1  1  1  1
2     2  2  2  2
3     3  3  3  3
4     4  4 NA NA
5     5  5 NA NA
6     6  6 NA NA
7     4 NA  4  5
8     5 NA  4  5
9     6 NA  4  5
Which as you can see has created duplicate rows for the 4,5,6 index instead of replacing the NA values.
Any help would be greatly appreciated!
merge then aggregate:
aggregate(. ~ Index, data=merge(df1, df2, all=TRUE), na.omit, na.action=na.pass )
#  Index B C A
#1     1 1 1 1
#2     2 2 2 2
#3     3 3 3 3
#4     4 4 5 4
#5     5 4 5 5
#6     6 4 5 6
Or in dplyr speak:
df1 %>% 
    full_join(df2) %>%
    group_by(Index) %>%
    summarise_each(funs(na.omit))
#Joining by: c("Index", "B", "C")
#Source: local data frame [6 x 4]
#
#  Index     A     B     C
#  (dbl) (int) (dbl) (dbl)
#1     1     1     1     1
#2     2     2     2     2
#3     3     3     3     3
#4     4     4     4     5
#5     5     5     4     5
#6     6     6     4     5
                        We can use join from data.table.  Convert the 'data.frame' to 'data.table' (setDT(df1), join on with 'df1' using "Index" and assign (:=), the values in 'B' and 'C' with 'i.B' and 'i.C'.
library(data.table)
setDT(df1)[df2, c('B', 'C') := .(i.B, i.C), on = "Index"]
df1
#   Index A B C
#1:     1 1 1 1
#2:     2 2 2 2
#3:     3 3 3 3
#4:     4 4 4 5
#5:     5 5 4 5
#6:     6 6 4 5
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With