I am trying to apply an equation to two matrices. Since I am a beginner R user, it seems very difficult to me. I would be greatful if you could give me some advice.
I have two similarity matrices:
> r
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 4 2 2 5 5
[2,] 4 0 8 3 3 2
[3,] 2 8 0 4 4 3
[4,] 2 3 4 0 0 3
[5,] 5 3 4 0 0 5
[6,] 5 2 3 3 5 0
> nr
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 4 7 2 4 3
[2,] 4 0 5 2 3 2
[3,] 7 5 0 3 2 2
[4,] 2 2 3 0 7 2
[5,] 4 3 2 7 0 5
[6,] 3 2 2 2 5 0
And I wolud like to apply to these the following:
sum((r[i,j]-nr[i,j])^2)/6
My great problem is to extract elements of nr
from the elements r
.
If I substitute nr[i,j]
with a number, for example 0.4
then the following works perfectly:
s<-numeric()
for (i in 1:nrow(r))
{
for (j in 1:ncol(r))
{
s[k]<-sum((r[i,j]-0.4)^2)/6
}
}
> s
[1] 0.02666667
But I can't figure out how could I modify this code to solve the original problem. I would appreciate any kind of help/suggestion. Thanks!
normal operators like +
, -
, *
, /
and ^
do element wise operations. So simply (r - nr)^2/6
will do the trick for you.
r
## [,1] [,2] [,3]
## [1,] 2 2 2
## [2,] 2 2 2
## [3,] 2 2 2
nr
## [,1] [,2] [,3]
## [1,] 3 3 3
## [2,] 3 3 3
## [3,] 3 3 3
r * nr
## [,1] [,2] [,3]
## [1,] 6 6 6
## [2,] 6 6 6
## [3,] 6 6 6
r - nr
## [,1] [,2] [,3]
## [1,] -1 -1 -1
## [2,] -1 -1 -1
## [3,] -1 -1 -1
(r - nr)^2/6
## [,1] [,2] [,3]
## [1,] 0.1666667 0.1666667 0.1666667
## [2,] 0.1666667 0.1666667 0.1666667
## [3,] 0.1666667 0.1666667 0.1666667
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With