Input
row.no column2 column3 column4
1 bb ee up
2 bb ee down
3 bb ee up
4 bb yy down
5 bb zz up
I have a rule to remove row 1 and 2 and 3, as while column2 and column3 for row 1, 2 and 3 are the same, contradictory data (up
and down
) are found in column 4.
How can I ask R to remove those rows with same name in column2 and column3 but contracting column 3 to result a matrix as follows:
row.no column2 column3 column4
4 bb yy down
5 bb zz up
The functions in package plyr
really shine at this type of problem. Here is a solution using two lines of code.
Set up the data (kindly provided by @GavinSimpson)
dat <- structure(list(row.no = 1:5, column2 = structure(c(1L, 1L, 1L,
1L, 1L), .Label = "bb", class = "factor"), column3 = structure(c(1L,
1L, 1L, 2L, 3L), .Label = c("ee", "yy", "zz"), class = "factor"),
column4 = structure(c(2L, 1L, 2L, 1L, 2L), .Label = c("down",
"up"), class = "factor")), .Names = c("row.no", "column2",
"column3", "column4"), class = "data.frame", row.names = c(NA,
-5L))
Load the plyr
package
library(plyr)
Use ddply
to split, analyse and combine dat. The following line of code analyses splits dat into unique combination of (column2 and column3) separately. I then add a column called unique, which calculates the number of unique values of column4 for each set. Finally, use a simple subsetting to return only those lines where unique==1, and drop column 5.
df <- ddply(dat, .(column2, column3), transform,
row.no=row.no, unique=length(unique(column4)))
df[df$unique==1, -5]
And the results:
row.no column2 column3 column4
4 4 bb yy down
5 5 bb zz up
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With