I am attempting to read a binary file using Python. Someone else has read in the data with R using the following code:
x <- readBin(webpage, numeric(), n=6e8, size = 4, endian = "little")
myPoints <- data.frame("tmax" = x[1:(length(x)/4)],
"nmax" = x[(length(x)/4 + 1):(2*(length(x)/4))],
"tmin" = x[(2*length(x)/4 + 1):(3*(length(x)/4))],
"nmin" = x[(3*length(x)/4 + 1):(length(x))])
With Python, I am trying the following code:
import struct
with open('file','rb') as f:
val = f.read(16)
while val != '':
print(struct.unpack('4f', val))
val = f.read(16)
I am coming to slightly different results. For example, the first row in R returns 4 columns as -999.9, 0, -999.0, 0. Python returns -999.0 for all four columns (images below).
Python output:
R output:
I know that they are slicing by the length of the file with some of the []
code, but I do not know how exactly to do this in Python, nor do I understand quite why they do this. Basically, I want to recreate what R is doing in Python.
I can provide more of either code base if needed. I did not want to overwhelm with code that was not necessary.
Deducing from the R code, the binary file first contains a certain number tmax
's, then the same number of nmax
's, then tmin
's and nmin
's. What the code does is reading the entire file, which is then chopped up in the 4 parts (tmax's, nmax's, etc..) using slicing.
To do the same in python:
import struct
# Read entire file into memory first. This is done so we can count
# number of bytes before parsing the bytes. It is not a very memory
# efficient way, but it's the easiest. The R-code as posted wastes even
# more memory: it always takes 6e8 * 4 bytes (~ 2.2Gb) of memory no
# matter how small the file may be.
#
data = open('data.bin','rb').read()
# Calculate number of points in the file. This is
# file-size / 16, because there are 4 numeric()'s per
# point, and they are 4 bytes each.
#
num = int(len(data) / 16)
# Now we know how much there are, we take all tmax numbers first, then
# all nmax's, tmin's and lastly all nmin's.
# First generate a format string because it depends on the number points
# there are in the file. It will look like: "fffff"
#
format_string = 'f' * num
# Then, for cleaner code, calculate chunk size of the bytes we need to
# slice off each time.
#
n = num * 4 # 4-byte floats
# Note that python has different interpretation of slicing indices
# than R, so no "+1" is needed here as it is in the R code.
#
tmax = struct.unpack(format_string, data[:n])
nmax = struct.unpack(format_string, data[n:2*n])
tmin = struct.unpack(format_string, data[2*n:3*n])
nmin = struct.unpack(format_string, data[3*n:])
print("tmax", tmax)
print("nmax", nmax)
print("tmin", tmin)
print("nmin", nmin)
If the goal is to have this data structured as a list of points(?) like (tmax,nmax,tmin,nmin)
, then append this to the code:
print()
print("Points:")
# Combine ("zip") all 4 lists into a list of (tmax,nmax,tmin,nmin) points.
# Python has a function to do this at once: zip()
#
i = 0
for point in zip(tmax, nmax, tmin, nmin):
print(i, ":", point)
i += 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With