I want to create several columns with a ifelse()-condition. Here is my example-code:
df <- tibble(
date = lubridate::today() +0:9,
return= c(1,2.5,2,3,5,6.5,1,9,3,2))
And now I want to add new columns with ascending conditions (from 1 to 8). The first column should only contain values from the "return"-column, which are higher than 1, the second column should only contain values, which are higher than 2, and so on...
I can calculate each column with a mutate() function:
df <- df %>% mutate( `return>1`= ifelse(return > 1, return, NA))
df <- df %>% mutate( `return>2`= ifelse(return > 2, return, NA))
df <- df %>% mutate( `return>3`= ifelse(return > 3, return, NA))
df <- df %>% mutate( `return>4`= ifelse(return > 4, return, NA))
df <- df %>% mutate( `return>5`= ifelse(return > 5, return, NA))
df <- df %>% mutate( `return>6`= ifelse(return > 6, return, NA))
df <- df %>% mutate( `return>7`= ifelse(return > 7, return, NA))
df <- df %>% mutate( `return>8`= ifelse(return > 8, return, NA))
> head(df)
# A tibble: 6 x 10
date return `return>1` `return>2` `return>3` `return>4` `return>5` `return>6` `return>7` `return>8`
<date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2019-03-08 1 NA NA NA NA NA NA NA NA
2 2019-03-09 2.5 2.5 2.5 NA NA NA NA NA NA
3 2019-03-10 2 2 NA NA NA NA NA NA NA
4 2019-03-11 3 3 3 NA NA NA NA NA NA
5 2019-03-12 5 5 5 5 5 NA NA NA NA
6 2019-03-13 6.5 6.5 6.5 6.5 6.5 6.5 6.5 NA NA
Is there an easier way to create all these columns and reduce all this code? Maybe with a map_function? And is there a way to automatically name the new columns?
An option with lapply
n <- seq(1, 8)
df[paste0("return > ", n)] <- lapply(n, function(x)
replace(df$return, df$return <= x, NA))
# date return `return > 1` `return > 2` `return > 3` .....
# <date> <dbl> <dbl> <dbl> <dbl>
#1 2019-03-08 1 NA NA NA
#2 2019-03-09 2.5 2.5 2.5 NA
#3 2019-03-10 2 2 NA NA
#4 2019-03-11 3 3 3 NA
#5 2019-03-12 5 5 5 5
#6 2019-03-13 6.5 6.5 6.5 6.5
#...
use purrr::map_df
> bind_cols(df,purrr::map_df(setNames(1:8,paste0('return>',1:8)),
+ function(x) ifelse(df$return > x, df$return, NA)))
# A tibble: 6 x 10
# date return `return>1` `return>2` `return>3` `return>4` `return>5` `return>6` `return>7` `return>8`
# <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 2019-03-08 1 NA NA NA NA NA NA NA NA
# 2 2019-03-09 2.5 2.5 2.5 NA NA NA NA NA NA
# 3 2019-03-10 2 2 NA NA NA NA NA NA NA
# 4 2019-03-11 3 3 3 NA NA NA NA NA NA
# 5 2019-03-12 5 5 5 5 5 NA NA NA NA
# 6 2019-03-13 6.5 6.5 6.5 6.5 6.5 6.5 6.5 NA NA
Here is a for
loop solution:
for(i in 1:8){
varname =paste0("return>",i)
df[[varname]] <- with(df, ifelse(return > i, return, NA))
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With