I'm trying to use the packages quanteda
and caret
together to classify text based on a trained sample. As a test run, I wanted to compare the build-in naive bayes classifier of quanteda
with the ones in caret
. However, I can't seem to get caret
to work right.
Here is some code for reproduction. First on the quanteda
side:
library(quanteda)
library(quanteda.corpora)
library(caret)
corp <- data_corpus_movies
set.seed(300)
id_train <- sample(docnames(corp), size = 1500, replace = FALSE)
# get training set
training_dfm <- corpus_subset(corp, docnames(corp) %in% id_train) %>%
dfm(stem = TRUE)
# get test set (documents not in id_train, make features equal)
test_dfm <- corpus_subset(corp, !docnames(corp) %in% id_train) %>%
dfm(stem = TRUE) %>%
dfm_select(pattern = training_dfm,
selection = "keep")
# train model on sentiment
nb_quanteda <- textmodel_nb(training_dfm, docvars(training_dfm, "Sentiment"))
# predict and evaluate
actual_class <- docvars(test_dfm, "Sentiment")
predicted_class <- predict(nb_quanteda, newdata = test_dfm)
class_table_quanteda <- table(actual_class, predicted_class)
class_table_quanteda
#> predicted_class
#> actual_class neg pos
#> neg 202 47
#> pos 49 202
Not bad. The accuracy is 80.8% percent without tuning. Now the same (as far as I know) in caret
training_m <- convert(training_dfm, to = "matrix")
test_m <- convert(test_dfm, to = "matrix")
nb_caret <- train(x = training_m,
y = as.factor(docvars(training_dfm, "Sentiment")),
method = "naive_bayes",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(laplace = 1,
usekernel = FALSE,
adjust = FALSE),
verbose = TRUE)
predicted_class_caret <- predict(nb_caret, newdata = test_m)
class_table_caret <- table(actual_class, predicted_class_caret)
class_table_caret
#> predicted_class_caret
#> actual_class neg pos
#> neg 246 3
#> pos 249 2
Not only is the accuracy abysmal here (49.6% - roughly chance), the pos class is hardly ever predicted at all! So I'm pretty sure I'm missing something crucial here, as I would assume the implementations should be fairly similar, but not sure what.
I already looked at the source code for the quanteda
function (hoping that it might be built on caret
or the underlying package anyway) and saw that there is some weighting and smoothing going on. If I apply the same to my dfm before training (setting laplace = 0
later on), accuracy is a bit better. Yet also only 53%.
The answer is that caret (which uses naive_bayes
from the naivebayes package) assumes a Gaussian distribution, whereas quanteda::textmodel_nb()
is based on a more text-appropriate multinomial distribution (with the option of a Bernoulli distribution as well).
The documentation for textmodel_nb()
replicates the example from the IIR book (Manning, Raghavan, and Schütze 2008) and a further example from Jurafsky and Martin (2018) is also referenced. See:
Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. 2008. An Introduction to Information Retrieval. Cambridge University Press (Chapter 13). https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
Jurafsky, Daniel, and James H. Martin. 2018. Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Draft of 3rd edition, September 23, 2018 (Chapter 4). https://web.stanford.edu/~jurafsky/slp3/4.pdf
Another package, e1071, produces the same results you found as it is also based on a Gaussian distribution.
library("e1071")
nb_e1071 <- naiveBayes(x = training_m,
y = as.factor(docvars(training_dfm, "Sentiment")))
nb_e1071_pred <- predict(nb_e1071, newdata = test_m)
table(actual_class, nb_e1071_pred)
## nb_e1071_pred
## actual_class neg pos
## neg 246 3
## pos 249 2
However both caret and e1071 work on dense matrices, which is one reason they are so mind-numbingly slow compared to the quanteda approach which operates on the sparse dfm. So from the standpoint of appropriateness, efficiency, and (as per your results) the performance of the classifier, it should be pretty clear which one is preferred!
library("rbenchmark")
benchmark(
quanteda = {
nb_quanteda <- textmodel_nb(training_dfm, docvars(training_dfm, "Sentiment"))
predicted_class <- predict(nb_quanteda, newdata = test_dfm)
},
caret = {
nb_caret <- train(x = training_m,
y = as.factor(docvars(training_dfm, "Sentiment")),
method = "naive_bayes",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(laplace = 1,
usekernel = FALSE,
adjust = FALSE),
verbose = FALSE)
predicted_class_caret <- predict(nb_caret, newdata = test_m)
},
e1071 = {
nb_e1071 <- naiveBayes(x = training_m,
y = as.factor(docvars(training_dfm, "Sentiment")))
nb_e1071_pred <- predict(nb_e1071, newdata = test_m)
},
replications = 1
)
## test replications elapsed relative user.self sys.self user.child sys.child
## 2 caret 1 29.042 123.583 25.896 3.095 0 0
## 3 e1071 1 217.177 924.157 215.587 1.169 0 0
## 1 quanteda 1 0.235 1.000 0.213 0.023 0 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With