I have a list of lists (2 df's) and want to use lapply
to perform the same function for pre-defined columns in each df.
In particular I would like to use the winsorize function from the DescTools
package. At the moment I know how to do this by specifying all individual columns within the function(x) command, which is, however, tedious if I have many columns (see example).
After applying the function, the entire list of lists (all columns) with the transformed variables should be returned. Ideally, the transformed variables are extended with "_w" (e.g. "price_w") or similar to indicate that these are the winsorized variables.
My data looks as follows, although I want to apply the function only to the pre-defined columns "price" and "quality".
id <- c(1, 5, 7, 9, 12)
country <- c("A", "A", "C", "E", "E")
price <- c(2.1, 4.6, 3.7, 2.9, 1.8)
quality <- c(3.1, 5.2, 3.3, 1.7, 0.9)
df1 <- cbind.data.frame(id, country, price, quality)
id <- c(2, 3, 4, 10, 14)
country <- c("F", "F", "A", "Z", "X")
price <- c(1.8, 5.2, 2.9, 4.6, 3.9)
quality <- c(4.3, 2.5, 6.9, 1.9, 0.8)
df2 <- cbind.data.frame(id, country, price, quality)
my.list <- list(df1, df2)
cols <- c("price", "quality")
This is what I have so far, which would only work for a small number of columns due to the necessary manual changes:
my.list <- lapply(my.list, function(x) {
x$price_w <- DescTools::Winsorize(x$price, probs = c(.01, .99), na.rm = TRUE)
x$quality_w <- DescTools::Winsorize(x$quality, probs = c(.01, .99), na.rm = TRUE)
return(x)
})
We can use nested lapply
to apply the function for multiple columns in each list.
lapply(my.list, function(x) {
x[paste0(cols, '_w')] <- lapply(x[cols], DescTools::Winsorize)
x
})
#[[1]]
# id country price quality price_w quality_w
#1 1 A 2.1 3.1 2.10 3.10
#2 5 A 4.6 5.2 4.42 4.82
#3 7 C 3.7 3.3 3.70 3.30
#4 9 E 2.9 1.7 2.90 1.70
#5 12 E 1.8 0.9 1.86 1.06
#[[2]]
# id country price quality price_w quality_w
#1 2 F 1.8 4.3 2.02 4.30
#2 3 F 5.2 2.5 5.08 2.50
#3 4 A 2.9 6.9 2.90 6.38
#4 10 Z 4.6 1.9 4.60 1.90
#5 14 X 3.9 0.8 3.90 1.02
One purrr
and dplyr
option could be:
map(.x = my.list,
~ .x %>%
mutate(across(all_of(cols),
list(w = ~ DescTools::Winsorize(., probs = c(.01, .99), na.rm = TRUE)))))
[[1]]
id country price quality price_w quality_w
1 1 A 2.1 3.1 2.100 3.100
2 5 A 4.6 5.2 4.564 5.124
3 7 C 3.7 3.3 3.700 3.300
4 9 E 2.9 1.7 2.900 1.700
5 12 E 1.8 0.9 1.812 0.932
[[2]]
id country price quality price_w quality_w
1 2 F 1.8 4.3 1.844 4.300
2 3 F 5.2 2.5 5.176 2.500
3 4 A 2.9 6.9 2.900 6.796
4 10 Z 4.6 1.9 4.600 1.900
5 14 X 3.9 0.8 3.900 0.844
here is a data.table
solution
library( data.table )
library( DescTools )
#make df1 and df2 a data.table
my.list <- lapply( my.list, setDT )
#rund function on columns
lapply( my.list, function(x) {
x[, paste0( (cols), "_w" ) := DescTools::Winsorize( .SD,
probs = c(0.1, 0.9),
na.rm = TRUE ), .SDcols = cols]
})
#
# [[1]]
# id country price quality price_w quality_w
# 1: 1 A 2.1 3.1 2.1 3.10
# 2: 5 A 4.6 5.2 4.6 4.66
# 3: 7 C 3.7 3.3 3.7 3.30
# 4: 9 E 2.9 1.7 2.9 1.70
# 5: 12 E 1.8 0.9 1.8 1.62
#
# [[2]]
# id country price quality price_w quality_w
# 1: 2 F 1.8 4.3 1.8 4.30
# 2: 3 F 5.2 2.5 5.2 2.50
# 3: 4 A 2.9 6.9 2.9 5.37
# 4: 10 Z 4.6 1.9 4.6 1.90
# 5: 14 X 3.9 0.8 3.9 1.70
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With