I have a data frame like this:
group student exam_passed subject
A 01 Y Math
A 01 N Science
A 01 Y Japanese
A 02 N Math
A 02 Y Science
B 01 Y Japanese
C 02 N Math
What I would like to achieve is the below result:
group student exam_passed subject_Math subject_Science subject_Japanese
A 01 Y 1 0 0
A 01 N 0 1 0
A 01 Y 0 0 1
A 02 N 1 0 0
A 02 Y 0 1 0
B 01 Y 0 0 1
C 02 N 1 0 0
Here is the test data frame:
df <- data.frame(
group = c('A', 'A', 'A', 'A', 'A', 'B', 'C'),
student = c('01', '01', '01', '02', '02', '01', '02'),
exam_pass = c('Y', 'N', 'Y', 'N', 'Y', 'Y', 'N'),
subject = c('Math', 'Science', 'Japanese', 'Math', 'Science', 'Japanese', 'Math')
)
I have tried for loop, however, the original data is too large to deal with, and
mltools::one_hot(df, col = 'subject')
doesn't work either because of the this error:
Error in `[.data.frame`(dt, , cols, with = FALSE) :
unused argument (with = FALSE)
Could anyone help me with this? Thanks!
require(tidyr)
require(dplyr)
df %>% mutate(value = 1) %>% spread(subject, value, fill = 0 )
group student exam_pass Japanese Math Science
1 A 01 N 0 0 1
2 A 01 Y 1 1 0
3 A 02 N 0 1 0
4 A 02 Y 0 0 1
5 B 01 Y 1 0 0
6 C 02 N 0 1 0
another option
library(dplyr)
df %>%
mutate(subject_Math = ifelse(subject=='Math', 1, 0),
subject_Science = ifelse(subject=='Science', 1, 0),
subject_Japanese = ifelse(subject=='Japanese', 1, 0))
You can do this with the arcanely-named contrasts
function.
Relevant section of the docs:
if
contrasts = FALSE
an identity matrix is returned.
So here's a basic implementation:
encode_onehot <- function(x, colname_prefix = "", colname_suffix = "") {
if (!is.factor(x)) {
x <- as.factor(x)
}
encoding_matrix <- contrasts(x, contrasts = FALSE)
encoded_data <- encoding_matrix[as.integer(x)]
colnames(encoded_data) <- paste0(colname_prefix, colnames(encoded_data), colname_suffix)
encoded_data
}
df <- cbind(df, encode_onehot(df$subject, "subject_"))
This is fairly generic, has no dependencies on other libraries, and should be reasonably fast except on very large datasets.
Here is a more generic solution using data.table
library and caret
library(caret)
library(data.table)
dt <- data.table(
group = c('A', 'A', 'A', 'A', 'A', 'B', 'C'),
student = c('01', '01', '01', '02', '02', '01', '02'),
exam_pass = c('Y', 'N', 'Y', 'N', 'Y', 'Y', 'N'),
subject = c('Math', 'Science', 'Japanese', 'Math', 'Science', 'Japanese', 'Math')
)
vars <- 'subject'
separator <- '_'
bin_vars <- predict(dummyVars( as.formula(paste0("~",paste0(vars,collapse = "+"))),
data = dt, na.action = na.pass), newdata = dt)
colnames(bin_vars) <- paste0(gsub(vars,paste0(vars,separator),colnames(bin_vars)))
dt[,vars:=NULL]
dt <- cbind(dt,bin_vars)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With