Is it only me who have the problem with extracting coordinates of a polygon from SpatialPolygonsDataFrame object? I am able to extract other slots of the object (ID,plotOrder) but not coordinates (coords). I don't know what I am doing wrong. Please find below my R session where bdryData being the SpatialPolygonsDataFrame object with two polygons.
> bdryData
An object of class "SpatialPolygonsDataFrame"
Slot "data":
  ID GRIDCODE
0  1        0
1  2        0
Slot "polygons":
[[1]]
An object of class "Polygons"
Slot "Polygons":
[[1]]
An object of class "Polygon"
Slot "labpt":
[1] 415499.1 432781.7
Slot "area":
[1] 0.6846572
Slot "hole":
[1] FALSE
Slot "ringDir":
[1] 1
Slot "coords":
         [,1]     [,2]
[1,] 415499.6 432781.2
[2,] 415498.4 432781.5
[3,] 415499.3 432782.4
[4,] 415499.6 432781.2
Slot "plotOrder":
[1] 1
Slot "labpt":
[1] 415499.1 432781.7
Slot "ID":
[1] "0"
Slot "area":
[1] 0.6846572
[[2]]
An object of class "Polygons"
Slot "Polygons":
[[1]]
An object of class "Polygon"
Slot "labpt":
[1] 415587.3 432779.4
Slot "area":
[1] 20712.98
Slot "hole":
[1] FALSE
Slot "ringDir":
[1] 1
Slot "coords":
           [,1]     [,2]
  [1,] 415499.6 432781.2
  [2,] 415505.0 432781.8
  [3,] 415506.5 432792.6
  [4,] 415508.9 432792.8
  [5,] 415515.0 432791.5
  [6,] 415517.7 432795.6
  [7,] 415528.6 432797.7
  [8,] 415538.8 432804.2
  [9,] 415543.2 432805.8
 [10,] 415545.1 432803.6
 [11,] 415547.1 432804.7
 [12,] 415551.7 432805.8
 [13,] 415557.5 432812.3
 [14,] 415564.2 432817.1
 [15,] 415568.5 432823.9
 [16,] 415571.0 432826.8
 [17,] 415573.2 432828.7
 [18,] 415574.1 432829.7
 [19,] 415576.2 432830.7
 [20,] 415580.2 432833.8
 [21,] 415589.6 432836.0
 [22,] 415593.1 432841.0
 [23,] 415592.2 432843.7
 [24,] 415590.6 432846.6
 [25,] 415589.0 432853.3
 [26,] 415584.8 432855.3
 [27,] 415579.7 432859.8
 [28,] 415577.7 432866.2
 [29,] 415575.6 432868.1
 [30,] 415566.7 432880.7
 [31,] 415562.7 432887.5
 [32,] 415559.2 432889.1
 [33,] 415561.5 432890.7
 [34,] 415586.2 432889.7
 [35,] 415587.1 432888.6
 [36,] 415588.5 432890.2
 [37,] 415598.2 432888.7
 [38,] 415599.1 432887.7
 [39,] 415601.2 432886.7
 [40,] 415603.1 432885.7
 [41,] 415605.2 432884.7
 [42,] 415606.1 432882.7
 [43,] 415607.2 432880.7
 [44,] 415608.3 432878.3
 [45,] 415612.2 432874.8
 [46,] 415614.7 432871.9
 [47,] 415617.1 432870.7
 [48,] 415622.4 432868.2
 [49,] 415622.0 432862.4
 [50,] 415624.2 432855.4
 [51,] 415633.2 432845.3
 [52,] 415639.0 432841.1
 [53,] 415642.8 432832.9
 [54,] 415647.5 432828.7
 [55,] 415654.3 432820.3
 [56,] 415654.1 432816.5
 [57,] 415658.2 432812.8
 [58,] 415661.9 432808.6
 [59,] 415663.5 432808.7
 [60,] 415668.1 432803.5
 [61,] 415676.5 432801.3
 [62,] 415679.1 432802.7
 [63,] 415680.1 432802.7
 [64,] 415681.1 432802.7
 [65,] 415682.2 432802.7
 [66,] 415685.8 432804.7
 [67,] 415691.8 432802.2
 [68,] 415693.6 432798.9
 [69,] 415696.2 432777.0
 [70,] 415689.8 432773.5
 [71,] 415683.7 432771.6
 [72,] 415680.2 432766.7
 [73,] 415679.0 432765.6
 [74,] 415676.8 432753.7
 [75,] 415671.4 432747.7
 [76,] 415662.7 432747.2
 [77,] 415658.7 432750.0
 [78,] 415657.0 432746.3
 [79,] 415654.1 432743.7
 [80,] 415652.3 432739.8
 [81,] 415649.6 432739.6
 [82,] 415648.0 432739.7
 [83,] 415641.9 432736.4
 [84,] 415633.4 432736.9
 [85,] 415630.2 432734.7
 [86,] 415622.3 432733.6
 [87,] 415614.4 432726.5
 [88,] 415617.1 432719.1
 [89,] 415612.5 432718.1
 [90,] 415610.0 432720.9
 [91,] 415606.2 432716.6
 [92,] 415603.2 432713.9
 [93,] 415601.4 432710.0
 [94,] 415580.3 432708.7
 [95,] 415545.1 432709.7
 [96,] 415543.5 432711.5
 [97,] 415534.0 432715.7
 [98,] 415527.1 432713.7
 [99,] 415521.1 432711.6
[100,] 415505.6 432710.6
[101,] 415501.3 432710.9
[102,] 415499.3 432708.7
[103,] 415495.6 432711.6
[104,] 415482.6 432726.2
[105,] 415477.2 432734.0
[106,] 415478.1 432737.7
[107,] 415479.2 432739.7
[108,] 415480.9 432743.4
[109,] 415486.5 432751.2
[110,] 415493.2 432760.7
[111,] 415494.1 432762.7
[112,] 415498.1 432767.9
[113,] 415497.2 432770.7
[114,] 415490.6 432773.2
[115,] 415493.2 432775.6
[116,] 415496.0 432778.7
[117,] 415499.2 432779.7
[118,] 415499.6 432781.2
Slot "plotOrder":
[1] 1
Slot "labpt":
[1] 415587.3 432779.4
Slot "ID":
[1] "1"
Slot "area":
[1] 20712.98
Slot "plotOrder":
[1] 2 1
Slot "bbox":
       min      max
x 415477.2 415696.2
y 432708.7 432890.7
Slot "proj4string":
CRS arguments:
 +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000
+datum=OSGB36 +units=m +no_defs +ellps=airy
+towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894 
Subsetting second polygon from bdryData
> bdryData@polygons[[2]]
An object of class "Polygons"
Slot "Polygons":
[[1]]
An object of class "Polygon"
Slot "labpt":
[1] 415587.3 432779.4
Slot "area":
[1] 20712.98
Slot "hole":
[1] FALSE
Slot "ringDir":
[1] 1
Slot "coords":
           [,1]     [,2]
  [1,] 415499.6 432781.2
  [2,] 415505.0 432781.8
  [3,] 415506.5 432792.6
  [4,] 415508.9 432792.8
  [5,] 415515.0 432791.5
  [6,] 415517.7 432795.6
  [7,] 415528.6 432797.7
  [8,] 415538.8 432804.2
  [9,] 415543.2 432805.8
 [10,] 415545.1 432803.6
 [11,] 415547.1 432804.7
 [12,] 415551.7 432805.8
 [13,] 415557.5 432812.3
 [14,] 415564.2 432817.1
 [15,] 415568.5 432823.9
 [16,] 415571.0 432826.8
 [17,] 415573.2 432828.7
 [18,] 415574.1 432829.7
 [19,] 415576.2 432830.7
 [20,] 415580.2 432833.8
 [21,] 415589.6 432836.0
 [22,] 415593.1 432841.0
 [23,] 415592.2 432843.7
 [24,] 415590.6 432846.6
 [25,] 415589.0 432853.3
 [26,] 415584.8 432855.3
 [27,] 415579.7 432859.8
 [28,] 415577.7 432866.2
 [29,] 415575.6 432868.1
 [30,] 415566.7 432880.7
 [31,] 415562.7 432887.5
 [32,] 415559.2 432889.1
 [33,] 415561.5 432890.7
 [34,] 415586.2 432889.7
 [35,] 415587.1 432888.6
 [36,] 415588.5 432890.2
 [37,] 415598.2 432888.7
 [38,] 415599.1 432887.7
 [39,] 415601.2 432886.7
 [40,] 415603.1 432885.7
 [41,] 415605.2 432884.7
 [42,] 415606.1 432882.7
 [43,] 415607.2 432880.7
 [44,] 415608.3 432878.3
 [45,] 415612.2 432874.8
 [46,] 415614.7 432871.9
 [47,] 415617.1 432870.7
 [48,] 415622.4 432868.2
 [49,] 415622.0 432862.4
 [50,] 415624.2 432855.4
 [51,] 415633.2 432845.3
 [52,] 415639.0 432841.1
 [53,] 415642.8 432832.9
 [54,] 415647.5 432828.7
 [55,] 415654.3 432820.3
 [56,] 415654.1 432816.5
 [57,] 415658.2 432812.8
 [58,] 415661.9 432808.6
 [59,] 415663.5 432808.7
 [60,] 415668.1 432803.5
 [61,] 415676.5 432801.3
 [62,] 415679.1 432802.7
 [63,] 415680.1 432802.7
 [64,] 415681.1 432802.7
 [65,] 415682.2 432802.7
 [66,] 415685.8 432804.7
 [67,] 415691.8 432802.2
 [68,] 415693.6 432798.9
 [69,] 415696.2 432777.0
 [70,] 415689.8 432773.5
 [71,] 415683.7 432771.6
 [72,] 415680.2 432766.7
 [73,] 415679.0 432765.6
 [74,] 415676.8 432753.7
 [75,] 415671.4 432747.7
 [76,] 415662.7 432747.2
 [77,] 415658.7 432750.0
 [78,] 415657.0 432746.3
 [79,] 415654.1 432743.7
 [80,] 415652.3 432739.8
 [81,] 415649.6 432739.6
 [82,] 415648.0 432739.7
 [83,] 415641.9 432736.4
 [84,] 415633.4 432736.9
 [85,] 415630.2 432734.7
 [86,] 415622.3 432733.6
 [87,] 415614.4 432726.5
 [88,] 415617.1 432719.1
 [89,] 415612.5 432718.1
 [90,] 415610.0 432720.9
 [91,] 415606.2 432716.6
 [92,] 415603.2 432713.9
 [93,] 415601.4 432710.0
 [94,] 415580.3 432708.7
 [95,] 415545.1 432709.7
 [96,] 415543.5 432711.5
 [97,] 415534.0 432715.7
 [98,] 415527.1 432713.7
 [99,] 415521.1 432711.6
[100,] 415505.6 432710.6
[101,] 415501.3 432710.9
[102,] 415499.3 432708.7
[103,] 415495.6 432711.6
[104,] 415482.6 432726.2
[105,] 415477.2 432734.0
[106,] 415478.1 432737.7
[107,] 415479.2 432739.7
[108,] 415480.9 432743.4
[109,] 415486.5 432751.2
[110,] 415493.2 432760.7
[111,] 415494.1 432762.7
[112,] 415498.1 432767.9
[113,] 415497.2 432770.7
[114,] 415490.6 432773.2
[115,] 415493.2 432775.6
[116,] 415496.0 432778.7
[117,] 415499.2 432779.7
[118,] 415499.6 432781.2
Slot "plotOrder":
[1] 1
Slot "labpt":
[1] 415587.3 432779.4
Slot "ID":
[1] "1"
Slot "area":
[1] 20712.98
Extracting slots
> bdryData@polygons[[2]]@ID 
[1] "1"
> bdryData@polygons[[2]]@plotOrder
[1] 1
But problem with coordinates
> bdryData@polygons[[2]]@coords
Error: no slot of name "coords" for this object of class "Polygons"
Any help is really appreciated. Thanks.
This question was also addressed on gis.stackexchange, here. I made an example below testing all the options mentioned here by @mdsumner. Also have a look here
library(sp)
library(sf)
#> Warning: package 'sf' was built under R version 3.5.3
#> Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
library(raster)
library(spbabel)
#> Warning: package 'spbabel' was built under R version 3.5.3
library(tmap)
library(microbenchmark)
library(ggplot2)
# Prepare data
data(World)
# Convert from sf to sp objects
atf_sf <- World[World$iso_a3 == "ATF", ]
atf_sp <- as(atf_sf, "Spatial")
atf_sp
#> class       : SpatialPolygonsDataFrame 
#> features    : 1 
#> extent      : 5490427, 5660887, -6048972, -5932855  (xmin, xmax, ymin, ymax)
#> coord. ref. : +proj=eck4 +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
#> variables   : 15
#> # A tibble: 1 x 15
#>   iso_a3 name  sovereignt continent area  pop_est pop_est_dens economy
#>   <fct>  <fct> <fct>      <fct>     <S3:>   <dbl>        <dbl> <fct>  
#> 1 ATF    Fr. ~ France     Seven se~ 7257~     140       0.0193 6. Dev~
#> # ... with 7 more variables: income_grp <fct>, gdp_cap_est <dbl>,
#> #   life_exp <dbl>, well_being <dbl>, footprint <dbl>, inequality <dbl>,
#> #   HPI <dbl>
# Try various functions:
raster::geom(atf_sp)
#>       object part cump hole       x        y
#>  [1,]      1    1    1    0 5550200 -5932855
#>  [2,]      1    1    1    0 5589907 -5964836
#>  [3,]      1    1    1    0 5660887 -5977490
#>  [4,]      1    1    1    0 5656160 -5996685
#>  [5,]      1    1    1    0 5615621 -6042456
#>  [6,]      1    1    1    0 5490427 -6048972
#>  [7,]      1    1    1    0 5509148 -5995424
#>  [8,]      1    1    1    0 5536900 -5953683
#>  [9,]      1    1    1    0 5550200 -5932855
ggplot2::fortify(atf_sp)
#> Regions defined for each Polygons
#>      long      lat order  hole piece id group
#> 1 5550200 -5932855     1 FALSE     1  8   8.1
#> 2 5589907 -5964836     2 FALSE     1  8   8.1
#> 3 5660887 -5977490     3 FALSE     1  8   8.1
#> 4 5656160 -5996685     4 FALSE     1  8   8.1
#> 5 5615621 -6042456     5 FALSE     1  8   8.1
#> 6 5490427 -6048972     6 FALSE     1  8   8.1
#> 7 5509148 -5995424     7 FALSE     1  8   8.1
#> 8 5536900 -5953683     8 FALSE     1  8   8.1
#> 9 5550200 -5932855     9 FALSE     1  8   8.1
spbabel::sptable(atf_sp)
#> # A tibble: 9 x 6
#>   object_ branch_ island_ order_       x_        y_
#>     <int>   <int> <lgl>    <int>    <dbl>     <dbl>
#> 1       1       1 TRUE         1 5550200. -5932855.
#> 2       1       1 TRUE         2 5589907. -5964836.
#> 3       1       1 TRUE         3 5660887. -5977490.
#> 4       1       1 TRUE         4 5656160. -5996685.
#> 5       1       1 TRUE         5 5615621. -6042456.
#> 6       1       1 TRUE         6 5490427. -6048972.
#> 7       1       1 TRUE         7 5509148. -5995424.
#> 8       1       1 TRUE         8 5536900. -5953683.
#> 9       1       1 TRUE         9 5550200. -5932855.
as.data.frame(as(as(atf_sp, "SpatialLinesDataFrame"),"SpatialPointsDataFrame"))
#>     iso_a3                   name sovereignt               continent
#> 8      ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.1    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.2    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.3    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.4    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.5    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.6    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.7    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#> 8.8    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
#>                area pop_est pop_est_dens              economy
#> 8   7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.1 7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.2 7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.3 7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.4 7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.5 7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.6 7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.7 7257.455 [km^2]     140   0.01929051 6. Developing region
#> 8.8 7257.455 [km^2]     140   0.01929051 6. Developing region
#>                  income_grp gdp_cap_est life_exp well_being footprint
#> 8   2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.1 2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.2 2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.3 2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.4 2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.5 2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.6 2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.7 2. High income: nonOECD    114285.7       NA         NA        NA
#> 8.8 2. High income: nonOECD    114285.7       NA         NA        NA
#>     inequality HPI Lines.NR Lines.ID Line.NR coords.x1 coords.x2
#> 8           NA  NA        1        8       1   5550200  -5932855
#> 8.1         NA  NA        1        8       1   5589907  -5964836
#> 8.2         NA  NA        1        8       1   5660887  -5977490
#> 8.3         NA  NA        1        8       1   5656160  -5996685
#> 8.4         NA  NA        1        8       1   5615621  -6042456
#> 8.5         NA  NA        1        8       1   5490427  -6048972
#> 8.6         NA  NA        1        8       1   5509148  -5995424
#> 8.7         NA  NA        1        8       1   5536900  -5953683
#> 8.8         NA  NA        1        8       1   5550200  -5932855
# What about speed? raster::geom is the fastest
res <- microbenchmark(raster::geom(atf_sp),
                      ggplot2::fortify(atf_sp),
                      spbabel::sptable(atf_sp),
                      as.data.frame(as(as(atf_sp, "SpatialLinesDataFrame"),
                                       "SpatialPointsDataFrame")))
ggplot2::autoplot(res)
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.

Created on 2019-03-23 by the reprex package (v0.2.1)
Finally, I figured out that I didn't parse the output correctly. The correct way to do is bdryData@polygons[[2]]@Polygons[[1]]@coords. Mind the difference in command polygons(Polygons and polygons) and it took me ages to find out.
Use the coordinates() function from the sp package.  It should give you the values in a list format.  
You can also get the Polygon attribute from the shapefile.
mfile = readOGR(dsn=dsn,layer=layername)
polys = attr(mfile,'polygons')
npolys = length(polys)
for (i in 1:npolys){
  poly = polys[[i]]
  polys2 = attr(poly,'Polygons')
  npolys2 = length(polys2)
  for (j in 1:npolys2){
     #do stuff with these values
     coords = coordinates(polys2[[j]])
  }
}
                        This took me a while to figure out too. The following function I wrote worked for me. sp.df should be SpatialPolygonsDataFrame.
extractCoords <- function(sp.df)
{
    results <- list()
    for(i in 1:length(sp.df@polygons[[1]]@Polygons))
    {
        results[[i]] <- sp.df@polygons[[1]]@Polygons[[i]]@coords
    }
    results <- Reduce(rbind, results)
    results
}
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With