How can check if all rows in a dataframe is empty or having NaN value?
My test data:
structure(list(site = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "HK6", class = "factor"),
code = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "HK6", class = "factor"),
date = structure(c(1492905600, 1492909200, 1492912800, 1492916400,
1492920000, 1492923600, 1492927200, 1492930800, 1492934400,
1492938000, 1492941600, 1492945200, 1492948800, 1492952400,
1492956000, 1492959600, 1492963200, 1492966800, 1492970400,
1492974000, 1492977600, 1492981200, 1492984800, 1492988400,
1492992000, 1492995600, 1492999200, 1493002800, 1493006400,
1493010000, 1493013600, 1493017200, 1493020800, 1493024400,
1493028000, 1493031600, 1493035200, 1493038800, 1493042400,
1493046000, 1493049600, 1493053200, 1493056800, 1493060400,
1493064000, 1493067600, 1493071200, 1493074800, 1493078400,
1493082000, 1493085600, 1493089200, 1493092800, 1493096400,
1493100000, 1493103600, 1493107200, 1493110800, 1493114400,
1493118000, 1493121600, 1493125200, 1493128800, 1493132400,
1493136000, 1493139600, 1493143200, 1493146800, 1493150400,
1493154000, 1493157600, 1493161200, 1493164800, 1493168400,
1493172000, 1493175600, 1493179200, 1493182800, 1493186400,
1493190000, 1493193600, 1493197200, 1493200800, 1493204400,
1493208000, 1493211600, 1493215200, 1493218800, 1493222400,
1493226000, 1493229600, 1493233200, 1493236800, 1493240400,
1493244000, 1493247600, 1493251200, 1493254800, 1493258400,
1493262000, 1493265600, 1493269200, 1493272800, 1493276400,
1493280000, 1493283600, 1493287200, 1493290800, 1493294400,
1493298000, 1493301600, 1493305200, 1493308800, 1493312400,
1493316000, 1493319600, 1493323200, 1493326800, 1493330400,
1493334000, 1493337600, 1493341200, 1493344800, 1493348400,
1493352000, 1493355600, 1493359200, 1493362800, 1493366400,
1493370000, 1493373600, 1493377200, 1493380800, 1493384400,
1493388000, 1493391600, 1493395200, 1493398800, 1493402400,
1493406000, 1493409600, 1493413200, 1493416800, 1493420400
), class = c("POSIXct", "POSIXt"), tzone = "GMT"), PM25 = c(NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN)), row.names = c(NA,
-144L), class = c("grouped_df", "tbl_df", "tbl", "data.frame"
), .Names = c("site", "code", "date", "PM25"), vars = list(site,
code), drop = TRUE, indices = list(0:143), group_sizes = 144L, biggest_group_size = 144L, labels = structure(list(
site = structure(1L, .Label = "HK6", class = "factor"), code = structure(1L, .Label = "HK6", class = "factor")), row.names = c(NA,
-1L), class = "data.frame", vars = list(site, code), drop = TRUE, .Names = c("site",
"code")))
All rows at column PM25
are NaN, how can check if they are all NaN, then do something?
The column for PM25
is dynamic - sometimes it is PM10
or can be anything else.
Any ideas?
Sample data
my.df <- data.frame(a=c(1, NA, 3), b=c(5, NA, NaN))
my.df
# a b
# 1 1 5
# 2 NA NA
# 3 3 NaN
Identifying the rows having NA or NaN in all the columns.
ind <- rowSums(is.na(my.df)) == ncol(my.df)
Sample data
my.df <- data.frame(a=c(1, NA, 3), b=c(NA, NA, NaN))
my.df
# a b
# 1 1 NA
# 2 NA NA
# 3 3 NaN
Identifying the columns having NA or NaN in all the rows.
ind <- colSums(is.na(my.df)) == nrow(my.df)
ind
# a b
# FALSE TRUE
# to get the column names
names(my.df)[ind]
Specific Column only(as per OPs request):
sum(is.na(my.df[,'b'])) == nrow(my.df)
Thanks to Roland!
# alternate or best option
all(is.na(my.df[,'b']))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With