I'm trying to place a grid over San Jose like this:
Grid of San Jose
You can make the grid visually using the following code:
ca_cities = tigris::places(state = "CA") #using tigris package to get shape file of all CA cities
sj = ca_cities[ca_cities$NAME == "San Jose",] #specifying to San Jose
UTM_ZONE = "10" #the UTM zone for San Jose, will be used to convert the proj4string of sj into UTM
main_sj = sj@polygons[[1]]@Polygons[[5]] #the portion of the shape file I focus on. This is the boundary of san jose
#converting the main_sj polygon into a spatialpolygondataframe using the sp package
tst_ps = sp::Polygons(list(main_sj), 1)
tst_sps = sp::SpatialPolygons(list(tst_ps))
proj4string(tst_sps) = proj4string(sj)
df = data.frame(f = 99.9)
tst_spdf = sp::SpatialPolygonsDataFrame(tst_sps, data = df)
#transforming the proj4string and declaring the finished map as "map"
map = sp::spTransform(tst_sps, CRS(paste0("+proj=utm +zone=",UTM_ZONE," ellps=WGS84")))
#designates the number of horizontal and vertical lines of the grid
NUM_LINES_VERT = 25
NUM_LINES_HORZ = 25
#getting bounding box of map
bbox = map@bbox
#Marking the x and y coordinates for each of the grid lines.
x_spots = seq(bbox[1,1], bbox[1,2], length.out = NUM_LINES_HORZ)
y_spots = seq(bbox[2,1], bbox[2,2], length.out = NUM_LINES_VERT)
#creating the coordinates for the lines. top and bottom connect to each other. left and right connect to each other
top_vert_line_coords = expand.grid(x = x_spots, y = y_spots[1])
bottom_vert_line_coords = expand.grid(x = x_spots, y = y_spots[length(y_spots)])
left_horz_line_coords = expand.grid(x = x_spots[1], y = y_spots)
right_horz_line_coords = expand.grid(x = x_spots[length(x_spots)], y = y_spots)
#creating vertical lines and adding them all to a list
vert_line_list = list()
for(n in 1 : nrow(top_vert_line_coords)){
vert_line_list[[n]] = sp::Line(rbind(top_vert_line_coords[n,], bottom_vert_line_coords[n,]))
}
vert_lines = sp::Lines(vert_line_list, ID = "vert") #creating Lines object of the vertical lines
#creating horizontal lines and adding them all to a list
horz_line_list = list()
for(n in 1 : nrow(top_vert_line_coords)){
horz_line_list[[n]] = sp::Line(rbind(left_horz_line_coords[n,], right_horz_line_coords[n,]))
}
horz_lines = sp::Lines(horz_line_list, ID = "horz") #creating Lines object of the horizontal lines
all_lines = sp::Lines(c(horz_line_list, vert_line_list), ID = 1) #combining horizontal and vertical lines into a single grid format
grid_lines = sp::SpatialLines(list(all_lines)) #converting the lines object into a Spatial Lines object
proj4string(grid_lines) = proj4string(map) #ensuring the projections are the same between the map and the grid lines.
trimmed_grid = intersect(grid_lines, map) #grid that shapes to the san jose map
plot(map) #plotting the map of San Jose
lines(trimmed_grid) #plotting the grid
However, I am struggling to turn each grid 'square' (some of the grid pieces are not squares since they fit to the shape of the san jose map) into a bin which I could input data into. Put another way, if each grid 'square' was numbered 1:n, then I could make a dataframe like this:
grid_id num_assaults num_thefts
1 1 100 89
2 2 55 456
3 3 12 1321
4 4 48 498
5 5 66 6
and fill each grid 'square' with data the point location of each crime occurrence, hopefully using the over()
function from the sp
package.
I have tried solving this problem for weeks, and I can't figure it out. I have looked for an easy solution, but I can't seem to find it. Any help would be appreciated.
About Grid Locators and Grid Squares. An instrument of the Maidenhead Locator System (named after the town outside London where it was first conceived by a meeting of European VHF managers in 1980), a grid square measures 1° latitude by 2° longitude and measures approximately 70 × 100 miles in the continental US.
Additionally, here's an sf and tidyverse-based solution:
With sf, you can make a grid of squares with the st_make_grid()
function. Here I'll make a 2km grid over San Jose's bounding box, then intersect it with the boundary of San Jose. Note that I'm projecting to UTM zone 10N so I can specify the grid size in meters.
library(tigris)
library(tidyverse)
library(sf)
options(tigris_class = "sf", tigris_use_cache = TRUE)
set.seed(1234)
sj <- places("CA", cb = TRUE) %>%
filter(NAME == "San Jose") %>%
st_transform(26910)
g <- sj %>%
st_make_grid(cellsize = 2000) %>%
st_intersection(sj) %>%
st_cast("MULTIPOLYGON") %>%
st_sf() %>%
mutate(id = row_number())
Next, we can generate some random crime data with st_sample()
and plot it to see what we are working with.
thefts <- st_sample(sj, size = 500) %>%
st_sf()
assaults <- st_sample(sj, size = 200) %>%
st_sf()
plot(g$geometry)
plot(thefts, add = TRUE, col = "red")
Crime data can then be joined to the grid spatially with st_join()
. We can plot to check our results.
theft_grid <- g %>%
st_join(thefts) %>%
group_by(id) %>%
summarize(num_thefts = n())
plot(theft_grid["num_thefts"])
We can then do the same with the assaults data, then join the two datasets together to get the desired result. If you had a lot of crime datasets, these could be modified to work within some variation of purrr::map()
.
assault_grid <- g %>%
st_join(assaults) %>%
group_by(id) %>%
summarize(num_assaults = n())
st_geometry(assault_grid) <- NULL
crime_data <- left_join(theft_grid, assault_grid, by = "id")
crime_data
Simple feature collection with 190 features and 3 fields
geometry type: GEOMETRY
dimension: XY
bbox: xmin: 584412 ymin: 4109499 xmax: 625213.2 ymax: 4147443
epsg (SRID): 26910
proj4string: +proj=utm +zone=10 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
# A tibble: 190 x 4
id num_thefts num_assaults geometry
<int> <int> <int> <GEOMETRY [m]>
1 1 2 1 POLYGON ((607150.3 4111499, 608412 4111499, 608412 4109738,…
2 2 4 1 POLYGON ((608412 4109738, 608412 4111499, 609237.8 4111499,…
3 3 3 1 POLYGON ((608412 4113454, 608412 4111499, 607150.3 4111499,…
4 4 2 2 POLYGON ((609237.8 4111499, 608412 4111499, 608412 4113454,…
5 5 1 1 MULTIPOLYGON (((610412 4112522, 610412 4112804, 610597 4112…
6 6 1 1 POLYGON ((616205.4 4113499, 616412 4113499, 616412 4113309,…
7 7 1 1 MULTIPOLYGON (((617467.1 4113499, 618107.9 4113499, 617697.…
8 8 2 1 POLYGON ((605206.8 4115499, 606412 4115499, 606412 4114617,…
9 9 5 1 POLYGON ((606412 4114617, 606412 4115499, 608078.2 4115499,…
10 10 1 1 POLYGON ((609242.7 4115499, 610412 4115499, 610412 4113499,…
# ... with 180 more rows
With a Spatial* object, as your data
library(tigris)
ca_cities = tigris::places(state = "CA") #using tigris package to get shape file of all CA cities
sj = ca_cities[ca_cities$NAME == "San Jose",] #specifying to San Jose
sjutm = sp::spTransform(sj, CRS("+proj=utm +zone=10 +datum=WGS84"))
You can make a grid of polygons like this
library(raster)
r <- raster(sjutm, ncol=25, nrow=25)
rp <- as(r, 'SpatialPolygons')
Show it
plot(sjutm, col='red')
lines(rp, col='blue')
To count the number of cases per grid cell (using some random points here) you do not want to use the polygons but rather the RasterLayer
set.seed(0)
x <- runif(500, xmin(r), xmax(r))
y <- runif(500, ymin(r), ymax(r))
xy1 <- cbind(x, y)
x <- runif(500, xmin(r), xmax(r))
y <- runif(500, ymin(r), ymax(r))
xy2 <- cbind(x, y)
d1 <- rasterize(xy1, r, fun="count", background=0)
d2 <- rasterize(xy2, r, fun="count", background=0)
plot(d1)
plot(sjutm, add=TRUE)
Followed by
s <- stack(d1, d2)
names(s) = c("assault", "theft")
s <- mask(s, sjutm)
plot(s, addfun=function()lines(sjutm))
To get the table you are after
p <- rasterToPoints(s)
cell <- cellFromXY(s, p[,1:2])
res <- data.frame(grid_id=cell, p[,3:4])
head(res)
# grid_id assault theft
#1 1 1 1
#2 2 0 1
#3 3 0 3
#4 5 1 1
#5 6 1 0
#6 26 0 0
You can also create a SpatialPolygonsDataFrame
from the results
pp <- as(s, 'SpatialPolygonsDataFrame')
pp
#class : SpatialPolygonsDataFrame
#features : 190
#extent : 584411.5, 623584.9, 4109499, 4147443 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=utm +zone=10 +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
#variables : 2
#names : assault, theft
#min values : 0, 0
#max values : 4, 5
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With