I have a large data frame with more than 100 000 records where the values are sorted
For example, consider the following dummy data set
df <- data.frame(values = c(1,1,2,2,3,4,5,6,6,7))
I want to create 3 groups of above values (in sequence only) such that the sum of each group is more or less the same
So for the above group, if I decide to divide the sorted df
in 3 groups as follows, their sums will be
1. 1 + 1 + 2 +2 + 3 + 4 = 13
2. 5 + 6 = 11
3. 6 + 7 = 13
How can create this optimization in R? any logic?
split() function is used to split the vector. cut() is the function that takes three parameters one parameter that is a vector with sequence along to divide the vector sequentially, second is the chunk number that is for number of chunks to be divided and the last is for labels to specify the chunks range.
To split the vector or data frame in R, use the split() function. To recover the split vector or data frame, use the unsplit() method.
So, let's use pruning. I think other solutions are giving a good solution, but not the best one.
First, we want to minimize
where S_n is the cumulative sum of the first n elements.
computeD <- function(p, q, S) {
n <- length(S)
S.star <- S[n] / 3
if (all(p < q)) {
(S[p] - S.star)^2 + (S[q] - S[p] - S.star)^2 + (S[n] - S[q] - S.star)^2
} else {
stop("You shouldn't be here!")
}
}
I think the other solutions optimize over p and q independently, which won't give a global minima (expected for some particular cases).
optiCut <- function(v) {
S <- cumsum(v)
n <- length(v)
S_star <- S[n] / 3
# good starting values
p_star <- which.min((S - S_star)^2)
q_star <- which.min((S - 2*S_star)^2)
print(min <- computeD(p_star, q_star, S))
count <- 0
for (q in 2:(n-1)) {
S3 <- S[n] - S[q] - S_star
if (S3*S3 < min) {
count <- count + 1
D <- computeD(seq_len(q - 1), q, S)
ind = which.min(D);
if (D[ind] < min) {
# Update optimal values
p_star = ind;
q_star = q;
min = D[ind];
}
}
}
c(p_star, q_star, computeD(p_star, q_star, S), count)
}
This is as fast as the other solutions because it prunes a lot the iterations based on the condition S3*S3 < min
. But, it gives the optimal solution, see optiCut(c(1, 2, 3, 3, 5, 10))
.
For the solution with K >= 3, I basically reimplemented trees with nested tibbles, that was fun!
optiCut_K <- function(v, K) {
S <- cumsum(v)
n <- length(v)
S_star <- S[n] / K
# good starting values
p_vec_first <- sapply(seq_len(K - 1), function(i) which.min((S - i*S_star)^2))
min_first <- sum((diff(c(0, S[c(p_vec_first, n)])) - S_star)^2)
compute_children <- function(level, ind, val) {
# leaf
if (level == 1) {
val <- val + (S[ind] - S_star)^2
if (val > min_first) {
return(NULL)
} else {
return(val)
}
}
P_all <- val + (S[ind] - S[seq_len(ind - 1)] - S_star)^2
inds <- which(P_all < min_first)
if (length(inds) == 0) return(NULL)
node <- tibble::tibble(
level = level - 1,
ind = inds,
val = P_all[inds]
)
node$children <- purrr::pmap(node, compute_children)
node <- dplyr::filter(node, !purrr::map_lgl(children, is.null))
`if`(nrow(node) == 0, NULL, node)
}
compute_children(K, n, 0)
}
This gives you all the solution that are least better than the greedy one:
v <- sort(sample(1:1000, 1e5, replace = TRUE))
test <- optiCut_K(v, 9)
You need to unnest this:
full_unnest <- function(tbl) {
tmp <- try(tidyr::unnest(tbl), silent = TRUE)
`if`(identical(class(tmp), "try-error"), tbl, full_unnest(tmp))
}
print(test <- full_unnest(test))
And finally, to get the best solution:
test[which.min(test$children), ]
Here is one approach:
splitter <- function(values, N){
inds = c(0, sapply(1:N, function(i) which.min(abs(cumsum(as.numeric(values)) - sum(as.numeric(values))/N*i))))
dif = diff(inds)
re = rep(1:length(dif), times = dif)
return(split(values, re))
}
how good is it:
# I calculate the mean and sd of the maximal difference of the sums in the
#splits of 100 runs:
#split on 15 parts
set.seed(5)
z1 = as.data.frame(matrix(1:15, nrow=1))
repeat{
values = sort(sample(1:1000, 1000000, replace = T))
z = splitter(values, 15)
z = lapply(z, sum)
z = unlist(z)
z1 = rbind(z1, z)
if (nrow(z1)>101){
break
}
}
z1 = z1[-1,]
mean(apply(z1, 1, function(x) max(x) - min(x)))
[1] 1004.158
sd(apply(z1, 1, function(x) max(x) - min(x)))
[1] 210.6653
#with less splits (4)
set.seed(5)
z1 = as.data.frame(matrix(1:4, nrow=1))
repeat{
values = sort(sample(1:1000, 1000000, replace = T))
z = splitter(values, 4)
z = lapply(z, sum)
z = unlist(z)
z1 = rbind(z1, z)
if (nrow(z1)>101){
break
}
}
z1 = z1[-1,]
mean(apply(z1, 1, function(x) max(x) - min(x)))
#632.7723
sd(apply(z1, 1, function(x) max(x) - min(x)))
#260.9864
library(microbenchmark)
1M:
values = sort(sample(1:1000, 1000000, replace = T))
microbenchmark(
sp_27 = splitter(values, 27),
sp_3 = splitter(values, 3),
)
Unit: milliseconds
expr min lq mean median uq max neval cld
sp_27 897.7346 934.2360 1052.0972 1078.6713 1118.6203 1329.3044 100 b
sp_3 108.3283 116.2223 209.4777 173.0522 291.8669 409.7050 100 a
btw F. Privé is correct this function does not give the globally optimal split. It is greedy which is not a good characteristic for such a problem. It will give splits with sums closer to global sum / n in the initial part of the vector but behaving as so will compromise the splits in the later part of the vector.
Here is a test comparison of the three functions posted so far:
db = function(values, N){
temp = floor(sum(values)/N)
inds = c(0, which(c(0, diff(cumsum(values) %% temp)) < 0)[1:(N-1)], length(values))
dif = diff(inds)
re = rep(1:length(dif), times = dif)
return(split(values, re))
} #had to change it a bit since the posted one would not work - the core
#which calculates the splitting positions is the same
missuse <- function(values, N){
inds = c(0, sapply(1:N, function(i) which.min(abs(cumsum(as.numeric(values)) - sum(as.numeric(values))/N*i))))
dif = diff(inds)
re = rep(1:length(dif), times = dif)
return(split(values, re))
}
prive = function(v, N){ #added dummy N argument because of the tester function
dummy = N
computeD <- function(p, q, S) {
n <- length(S)
S.star <- S[n] / 3
if (all(p < q)) {
(S[p] - S.star)^2 + (S[q] - S[p] - S.star)^2 + (S[n] - S[q] - S.star)^2
} else {
stop("You shouldn't be here!")
}
}
optiCut <- function(v, N) {
S <- cumsum(v)
n <- length(v)
S_star <- S[n] / 3
# good starting values
p_star <- which.min((S - S_star)^2)
q_star <- which.min((S - 2*S_star)^2)
print(min <- computeD(p_star, q_star, S))
count <- 0
for (q in 2:(n-1)) {
S3 <- S[n] - S[q] - S_star
if (S3*S3 < min) {
count <- count + 1
D <- computeD(seq_len(q - 1), q, S)
ind = which.min(D);
if (D[ind] < min) {
# Update optimal values
p_star = ind;
q_star = q;
min = D[ind];
}
}
}
c(p_star, q_star, computeD(p_star, q_star, S), count)
}
z3 = optiCut(v)
inds = c(0, z3[1:2], length(v))
dif = diff(inds)
re = rep(1:length(dif), times = dif)
return(split(v, re))
} #added output to be more in line with the other two
Function for testing:
tester = function(split, seed){
set.seed(seed)
z1 = as.data.frame(matrix(1:3, nrow=1))
repeat{
values = sort(sample(1:1000, 1000000, replace = T))
z = split(values, 3)
z = lapply(z, sum)
z = unlist(z)
z1 = rbind(z1, z)
if (nrow(z1)>101){
break
}
}
m = mean(apply(z1, 1, function(x) max(x) - min(x)))
s = sd(apply(z1, 1, function(x) max(x) - min(x)))
return(c("mean" = m, "sd" = s))
} #tests 100 random 1M length vectors with elements drawn from 1:1000
tester(db, 5)
#mean sd
#779.5686 349.5717
tester(missuse, 5)
#mean sd
#481.4804 216.9158
tester(prive, 5)
#mean sd
#451.6765 174.6303
prive is the clear winner - however it takes quite a bit longer than the other 2. and can handle splitting on 3 elements only.
microbenchmark(
missuse(values, 3),
prive(values, 3),
db(values, 3)
)
Unit: milliseconds
expr min lq mean median uq max neval cld
missuse(values, 3) 100.85978 111.1552 185.8199 120.1707 304.0303 393.4031 100 a
prive(values, 3) 1932.58682 1980.0515 2096.7516 2043.7133 2211.6294 2671.9357 100 b
db(values, 3) 96.86879 104.5141 194.0085 117.6270 306.7143 500.6455 100 a
N = 3
temp = floor(sum(df$values)/N)
inds = c(0, which(c(0, diff(cumsum(df$values) %% temp)) < 0)[1:(N-1)], NROW(df))
split(df$values, rep(1:N, ifelse(N == 1, NROW(df), diff(inds))))
#$`1`
#[1] 1 1 2 2 3 4
#$`2`
#[1] 5 6
#$`3`
#[1] 6 7
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With