I have a data.table with a column containing text like "Exp 928.6.3 (DMSO)". I want to parse this into columns like "Exp 928" and "6.3". It seems like the mighty data.table should be able to make quick work of this, but I can't figure out how to bend it to my will. Any thoughts?
Thanks, James
> dput(head(dat))
structure(list(Experiment = c("Exp 927.1.1 (DMSO)", "Exp 927.1.2 (DMSO)",
"Exp 927.1.3 (DMSO)", "Exp 927.1.4 (DMSO)", "Exp 927.1.5 (DMSO)",
"Exp 927.1.6 (DMSO)"), Conc.1..LP9. = c("Failed", "Failed", "Failed",
"Failed", "Failed", "0.97"), Conc.2..LP11. = c("Failed", "Failed",
"Failed", "Failed", "Failed", "0.87"), Conc.3..LP13. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "0.81"), Conc.4..LP15. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "0.76"), Conc.5..LP17. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "0.58"), Conc.1.uM..µM. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "0.001"), Conc.2.uM..µM. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "0.01"), Conc.3.uM..µM. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "0.1"), Conc.4.uM..µM. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "1"), Conc.5.uM..µM. = c("Failed",
"Failed", "Failed", "Failed", "Failed", "10"), exptNo = list(
"927", "1", "1", "927", "1", "1"), sample = c("927", "1",
"2", "927", "1", "2"), replicate = c("927", "1", "3", "927",
"1", "3")), .Names = c("Experiment", "Conc.1..LP9.", "Conc.2..LP11.",
"Conc.3..LP13.", "Conc.4..LP15.", "Conc.5..LP17.", "Conc.1.uM..µM.",
"Conc.2.uM..µM.", "Conc.3.uM..µM.", "Conc.4.uM..µM.", "Conc.5.uM..µM.",
"exptNo", "sample", "replicate"), sorted = "Experiment", class = c("data.table",
"data.frame"), row.names = c(NA, -6L), .internal.selfref = <pointer: 0x0000000000130788>)
I think there is simpler solution,
dat[,do.call(rbind,
strsplit(gsub( "(.*?)[.](.*) .*","\\1|\\2",Experiment),'[|]'))]
[,1] [,2]
[1,] "Exp 927" "1.1"
[2,] "Exp 927" "1.2"
[3,] "Exp 927" "1.3"
[4,] "Exp 927" "1.4"
[5,] "Exp 927" "1.5"
[6,] "Exp 927" "1.6"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With