I have a 2-dimensional array of integers, we'll call it "A".
I want to create a 3-dimensional array "B" of all 1s and 0s such that:
sum(B[i,j,:])==A[i.j]
, that is, B[i,j,:]
contains A[i,j]
1s
in it I know how I would do this using standard python indexing but this turns out to be very slow.
I am looking for a way to do this that takes advantage of the features that can make Numpy fast.
Here is how I would do it using standard indexing:
B=np.zeros((X,Y,Z))
indexoptions=range(Z)
for i in xrange(Y):
for j in xrange(X):
replacedindices=np.random.choice(indexoptions,size=A[i,j],replace=False)
B[i,j,[replacedindices]]=1
Can someone please explain how I can do this in a faster way?
Edit: Here is an example "A":
A=np.array([[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4]])
in this case X=Y=5 and Z>=5
Essentially the same idea as @JohnZwinck and @DSM, but with a shuffle
function for shuffling a given axis:
import numpy as np
def shuffle(a, axis=-1):
"""
Shuffle `a` in-place along the given axis.
Apply numpy.random.shuffle to the given axis of `a`.
Each one-dimensional slice is shuffled independently.
"""
b = a.swapaxes(axis,-1)
# Shuffle `b` in-place along the last axis. `b` is a view of `a`,
# so `a` is shuffled in place, too.
shp = b.shape[:-1]
for ndx in np.ndindex(shp):
np.random.shuffle(b[ndx])
return
def random_bits(a, n):
b = (a[..., np.newaxis] > np.arange(n)).astype(int)
shuffle(b)
return b
if __name__ == "__main__":
np.random.seed(12345)
A = np.random.randint(0, 5, size=(3,4))
Z = 6
B = random_bits(A, Z)
print "A:"
print A
print "B:"
print B
Output:
A:
[[2 1 4 1]
[2 1 1 3]
[1 3 0 2]]
B:
[[[1 0 0 0 0 1]
[0 1 0 0 0 0]
[0 1 1 1 1 0]
[0 0 0 1 0 0]]
[[0 1 0 1 0 0]
[0 0 0 1 0 0]
[0 0 1 0 0 0]
[1 0 1 0 1 0]]
[[0 0 0 0 0 1]
[0 0 1 1 1 0]
[0 0 0 0 0 0]
[0 0 1 0 1 0]]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With