Given an arbitrary tree, I can construct a subtype relation over that tree, using Schubert numbering:
constructH :: Tree a -> Tree (Type a)
where Type
nests the original label, and additionally provides the data needed to perform child/parent (or subtype) checks. With Schubert Numbering, the two Int parameters are sufficient for that.
data Type a where !Int -> !Int -> a -> Type a
This leads to the binary predicate
subtypeOf :: Type a -> Type a -> Bool
I now want to test with QuickCheck that this does indeed do what I want it to do. The following property, however, does not work, because QuickCheck just gives up:
subtypeSanity ∷ Tree (Type ()) → Gen Prop
subtypeSanity Node { rootLabel = t, subForest = f } =
let subtypes = concatMap flatten f
in (not $ null subtypes) ==> conjoin
(forAll (elements subtypes) (\x → x `subtypeOf` t):(map subtypeSanity f))
If I leave out the recursive call to subtypeSanity
, i.e. the tail of the list I'm passing to conjoin
, the property runs fine, but tests just the root node of the tree! How can I descend into my data structure recursively without QuickCheck giving up on generating new test cases?
If needed, I could provide the code to construct the Schubert Hierarchy, and the Arbitrary
instance for Tree (Type a)
, to provide a complete runnable example, but that would be quite a bit of code. I'm convinced that I'm just not "getting" QuickCheck, and using it in the wrong way here.
EDIT: unfortunately, the sized
function does not seem to eliminate the problem here. It ends up with the same result (see comment to J. Abrahamson's answer.)
EDIT II: I ended up "fixing" my problem by avoiding the recursive step, and avoiding conjoin
. We just make a list of all nodes in the tree, then test the single-node property (which worked fine from the beginning) on those.
allNodes ∷ Tree a → [Tree a]
allNodes n@(Node { subForest = f }) = n:(concatMap allNodes f)
subtypeSanity ∷ Tree (Type ()) → Gen Prop
subtypeSanity tree = forAll (elements $ allNodes tree)
(\(Node { rootLabel = t, subForest = f }) →
let subtypes = concatMap flatten f
in (not $ null subtypes) ==> forAll (elements subtypes) (\x → x `subtypeOf` t))
Tweaking the Arbitrary
instance for trees did not work. Here is the arbitrary instance I'm still using:
instance (Arbitrary a, Eq a) ⇒ Arbitrary (Tree (Type a)) where
arbitrary = liftM (constructH) $ sized arbTree
arbTree ∷ Arbitrary a ⇒ Int → Gen (Tree a)
arbTree n = do
m ← choose (0,n)
if m == 0
then Node <$> arbitrary <*> (return [])
else do part ← randomPartition n m
Node <$> arbitrary <*> mapM arbTree part
-- this is a crude way to find a sufficiently random x1,..,xm,
-- such that x1 + .. + xm = n, for any n, m, with 0 < m.
randomPartition ∷ Int → Int → Gen [Int]
randomPartition n m' = do
let m = m' - 1
seed ← liftM ((++[n]) . sort) $ replicateM m (choose (0,n))
return $ zipWith (-) seed (0:seed)
I consider the problem "solved for now," but if someone could explain to me why the recursive step and/or conjoin
made QuickCheck give up (after passing "only" 0 tests,) I would be more than grateful.
When generating Arbitrary
recursive structures, QuickCheck is often a bit too eager and generates sprawling, enormous random examples. These are undesirable as they usually don't better check the properties of interest and can be very slow. Two solutions are
Use things like the size parameter (sized
function) and frequency
function to bias the generator toward small trees.
Use a small-type oriented generator like those in smallcheck
. These try to exhaustively generate all "small" examples and thus help to keep the size of the tree down.
To clarify the sized
and frequency
method of controlling generation size, here's an example RoseTree
data Rose a = It a | Rose [Rose a]
instance Arbitrary a => Arbitrary (Rose a) where
arbitrary = frequency
[ (3, It <$> arbitrary) -- The 3-to-1 ratio is chosen, ah,
-- arbitrarily...
-- you'll want to tune it
, (1, Rose <$> children)
]
where children = sized $ \n -> vectorOf n arbitrary
It can be done even more simply with a different Rose
formation by very carefully controlling the size of the child list
data Rose a = Rose a [Rose a]
instance Arbitrary a => Arbitrary (Rose a) where
arbitrary = Rose <$> arbitrary <*> sized (\n -> vectorOf (tuneUp n) arbitrary)
where tuneUp n = round $ fromIntegral n / 4.0
You could do this without referencing sized
, but that gives the user of your Arbitrary
instance a knob to ask for larger trees if needed.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With