After performing quaternion multiplication I am getting (0,0,0,0). Could anyone let me know what it signifies.
(1 0 0 0) - Identity quaternion, no rotation,
(0 1 0 0) - 180° turn around X axis,
(0 0 1 0) - 180° turn around Y axis,
(0 0 0 1) - 180° turn around Z axis,
Likewise what could be the explanation for (0,0,0,0)
A quaternion represents two things. It has an x, y, and z component, which represents the axis about which a rotation will occur. It also has a w component, which represents the amount of rotation which will occur about this axis. In short, a vector, and a float.
"A quaternion is basically an axis in 3D space with a angle of rotation around the axis. Four values make up a quaternion, namely x, y, z and w. Three of the values are used to represent the axis in vector format, and the forth value would be the angle of rotation around the axis."
quaternion, in algebra, a generalization of two-dimensional complex numbers to three dimensions. Quaternions and rules for operations on them were invented by Irish mathematician Sir William Rowan Hamilton in 1843. He devised them as a way of describing three-dimensional problems in mechanics.
As mentioned by John Coleman, the (0,0,0,0) quaternion is the zero element. The only way to obtain this result using multiplications is to multiply by (0,0,0,0). Since we don't not much about the context, we cannot be more specific about the origin of the problem.
About the meaning of the (0,0,0,0): geometrically, a quaternion encodes a rotation AND a scale transformation: q = s*u, where 'q' is the quaternion, 's' is a scaling factor (a factor 's' leads to a s^2 scaling), and 'u' is a unit quaternion (a rotation). Since 'u' is non-zero by definition, the only way to obtain (0,0,0,0) is to have a scaling factor of zero combined with an undefined rotation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With