I am trying to implement a 32-bit floating point hardware divider in hardware and I am wondering if I can get any suggestions as to some tradeoffs between different algorithms?
My floating point unit currently suppports multiplication and addition/subtraction, but I am not going to switch it to a fused multiply-add (FMA) floating point architecture since this is an embedded platform where I am trying to minimize area usage.
Once upon a very long time ago i come across this neat and easy to implement float/fixed point divison algorithm used in military FPUs of that time period:
input must be unsigned and shifted so x < y
and both are in range < 0.5 ; 1 >
don't forget to store the difference of shifts sh = shx - shy
and original signs
find f
(by iterating) so y*f -> 1
.... after that x*f -> x/y
which is the division result
shift the x*f
back by sh
and restore result sign (sig=sigx*sigy)
the x*f
can be computed easily like this:
z=1-y
(x*f)=(x/y)=x*(1+z)*(1+z^2)*(1+z^4)*(1+z^8)*(1+z^16)...(1+z^2n)
where
n = log2(num of fractional bits for fixed point, or mantisa bit size for floating point)
You can also stop when z^2n
is zero on fixed bit width data types.
[Edit2] Had a bit of time&mood for this so here 32 bit IEEE 754 C++ implementation
I removed the old (bignum) examples to avoid confusion for future readers (they are still accessible in edit history if needed)
//---------------------------------------------------------------------------
// IEEE 754 single masks
const DWORD _f32_sig =0x80000000; // sign
const DWORD _f32_exp =0x7F800000; // exponent
const DWORD _f32_exp_sig=0x40000000; // exponent sign
const DWORD _f32_exp_bia=0x3F800000; // exponent bias
const DWORD _f32_exp_lsb=0x00800000; // exponent LSB
const DWORD _f32_exp_pos= 23; // exponent LSB bit position
const DWORD _f32_man =0x007FFFFF; // mantisa
const DWORD _f32_man_msb=0x00400000; // mantisa MSB
const DWORD _f32_man_bits= 23; // mantisa bits
//---------------------------------------------------------------------------
float f32_div(float x,float y)
{
union _f32 // float bits access
{
float f; // 32bit floating point
DWORD u; // 32 bit uint
};
_f32 xx,yy,zz; int sh; DWORD zsig; float z;
// result signum abs value
xx.f=x; zsig =xx.u&_f32_sig; xx.u&=(0xFFFFFFFF^_f32_sig);
yy.f=y; zsig^=yy.u&_f32_sig; yy.u&=(0xFFFFFFFF^_f32_sig);
// initial exponent difference sh and normalize exponents to speed up shift in range
sh =0;
sh-=((xx.u&_f32_exp)>>_f32_exp_pos)-(_f32_exp_bia>>_f32_exp_pos); xx.u&=(0xFFFFFFFF^_f32_exp); xx.u|=_f32_exp_bia;
sh+=((yy.u&_f32_exp)>>_f32_exp_pos)-(_f32_exp_bia>>_f32_exp_pos); yy.u&=(0xFFFFFFFF^_f32_exp); yy.u|=_f32_exp_bia;
// shift input in range
while (xx.f> 1.0f) { xx.f*=0.5f; sh--; }
while (xx.f< 0.5f) { xx.f*=2.0f; sh++; }
while (yy.f> 1.0f) { yy.f*=0.5f; sh++; }
while (yy.f< 0.5f) { yy.f*=2.0f; sh--; }
while (xx.f<=yy.f) { yy.f*=0.5f; sh++; }
// divider block
z=(1.0f-yy.f);
zz.f=xx.f*(1.0f+z);
for (;;)
{
z*=z; if (z==0.0f) break;
zz.f*=(1.0f+z);
}
// shift result back
for (;sh>0;) { sh--; zz.f*=0.5f; }
for (;sh<0;) { sh++; zz.f*=2.0f; }
// set signum
zz.u&=(0xFFFFFFFF^_f32_sig);
zz.u|=zsig;
return zz.f;
}
//---------------------------------------------------------------------------
I wanted to keep it simple so it is not optimized yet. You can for example replace all *=0.5
and *=2.0
by exponent inc/dec
... If you compare with FPU results on float
operator /
this will be a bit less precise because most FPUs compute on 80 bit internal format and this implementation is only on 32 bits.
As you can see I am using from FPU just +,-,*
. The stuff can be speed up by using fast sqr algorithms like
especially if you want to use big bit widths ...
Do not forget to implement normalization and or overflow/underflow correction.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With