Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

PyTorch: Add validation error in training

I am using PyTorch to train a cnn model. Here is my Network architecture:

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as I


    class Net(nn.Module):

        def __init__(self):
            super(Net, self).__init__()

            self.conv1 = nn.Conv2d(1, 32, 5)
            self.pool = nn.MaxPool2d(2,2)
            self.conv1_bn = nn.BatchNorm2d(32)
            self.conv2 = nn.Conv2d(32, 64, 5)
            self.conv2_drop = nn.Dropout2d()
            self.conv2_bn = nn.BatchNorm2d(64)
            self.fc1 = torch.nn.Linear(53*53*64, 256)
            self.fc2 = nn.Linear(256, 136)


        def forward(self, x):

            x = F.relu(self.conv1_bn(self.pool(self.conv1(x))))
            x = F.relu(self.conv2_bn(self.pool(self.conv2_drop(self.conv2(x)))))
            x = x.view(-1, 53*53*64)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)

            return x

Then I train the model like below:

# prepare the net for training
    net.train()

    for epoch in range(n_epochs):  # loop over the dataset multiple times

        running_loss = 0.0

        # train on batches of data, assumes you already have train_loader
        for batch_i, data in enumerate(train_loader):
            # get the input images and their corresponding labels
            images = data['image']
            key_pts = data['keypoints']

            # flatten pts
            key_pts = key_pts.view(key_pts.size(0), -1)

            # wrap them in a torch Variable
            images, key_pts = Variable(images), Variable(key_pts)

            # convert variables to floats for regression loss
            key_pts = key_pts.type(torch.FloatTensor)
            images = images.type(torch.FloatTensor)

            # forward pass to get outputs
            output_pts = net(images)

            # calculate the loss between predicted and target keypoints
            loss = criterion(output_pts, key_pts)

            # zero the parameter (weight) gradients
            optimizer.zero_grad()

            # backward pass to calculate the weight gradients
            loss.backward()

            # update the weights
            optimizer.step()

            # print loss statistics
            running_loss += loss.data[0]

I am wondering if it is possible to add the validation error in the training? I mean something like this (validation split) in Keras:

myModel.fit(trainX, trainY, epochs=50, batch_size=1, verbose=2, validation_split = 0.1)
like image 237
Edamame Avatar asked May 07 '18 04:05

Edamame


People also ask

How do you get a validation loss?

I believe the formula for calculating validation loss is J=1N∑Nif(ˆyi,yi) where N is the number of the data and f is the loss function. However, some people calculate validation loss as J=1M∑f(ˆy,y) where M is the number of an epoch.

How do I validate my model PyTorch?

To train the model, you have to loop over our data iterator, feed the inputs to the network, and optimize. To validate the results, you simply compare the predicted labels to the actual labels in the validation dataset after every training epoch.

What is validation loss?

4. Validation Loss. On the contrary, validation loss is a metric used to assess the performance of a deep learning model on the validation set. The validation set is a portion of the dataset set aside to validate the performance of the model.


1 Answers

Here is an example how to split your dataset for training and validation, then switch between the two phases every epoch:

import numpy as np
import torch
from torchvision import datasets
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler

# Examples:
my_dataset = datasets.MNIST(root="/home/benjamin/datasets/mnist", train=True, download=True)
validation_split = 0.1

dataset_len = len(my_dataset)
indices = list(range(dataset_len))

# Randomly splitting indices:
val_len = int(np.floor(validation_split * dataset_len))
validation_idx = np.random.choice(indices, size=val_len, replace=False)
train_idx = list(set(indices) - set(validation_idx))

# Contiguous split
# train_idx, validation_idx = indices[split:], indices[:split]

## Defining the samplers for each phase based on the random indices:
train_sampler = SubsetRandomSampler(train_idx)
validation_sampler = SubsetRandomSampler(validation_idx)

train_loader = torch.utils.data.DataLoader(my_dataset, sampler=train_sampler)
validation_loader = torch.utils.data.DataLoader(my_dataset, sampler=validation_sampler)
data_loaders = {"train": train_loader, "val": validation_loader}
data_lengths = {"train": len(train_idx), "val": val_len}

# Training with Validation (your code + code from Pytorch tutorial: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html)
n_epochs = 40
net = ...

for epoch in range(n_epochs):
    print('Epoch {}/{}'.format(epoch, n_epochs - 1))
    print('-' * 10)

    # Each epoch has a training and validation phase
    for phase in ['train', 'val']:
        if phase == 'train':
            optimizer = scheduler(optimizer, epoch)
            net.train(True)  # Set model to training mode
        else:
            net.train(False)  # Set model to evaluate mode

        running_loss = 0.0

        # Iterate over data.
        for data in data_loaders[phase]:

            # get the input images and their corresponding labels
            images = data['image']
            key_pts = data['keypoints']

            # flatten pts
            key_pts = key_pts.view(key_pts.size(0), -1)

            # wrap them in a torch Variable
            images, key_pts = Variable(images), Variable(key_pts)

            # convert variables to floats for regression loss
            key_pts = key_pts.type(torch.FloatTensor)
            images = images.type(torch.FloatTensor)

            # forward pass to get outputs
            output_pts = net(images)

            # calculate the loss between predicted and target keypoints
            loss = criterion(output_pts, key_pts)

            # zero the parameter (weight) gradients
            optimizer.zero_grad()

            # backward + optimize only if in training phase
            if phase == 'train':
                loss.backward()
                # update the weights
                optimizer.step()

            # print loss statistics
            running_loss += loss.data[0]

        epoch_loss = running_loss / data_lengths[phase]
        print('{} Loss: {:.4f}'.format(phase, epoch_loss))
like image 177
benjaminplanche Avatar answered Sep 22 '22 11:09

benjaminplanche