I am using PyTorch to train a cnn model. Here is my Network architecture:
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 5)
self.pool = nn.MaxPool2d(2,2)
self.conv1_bn = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, 5)
self.conv2_drop = nn.Dropout2d()
self.conv2_bn = nn.BatchNorm2d(64)
self.fc1 = torch.nn.Linear(53*53*64, 256)
self.fc2 = nn.Linear(256, 136)
def forward(self, x):
x = F.relu(self.conv1_bn(self.pool(self.conv1(x))))
x = F.relu(self.conv2_bn(self.pool(self.conv2_drop(self.conv2(x)))))
x = x.view(-1, 53*53*64)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return x
Then I train the model like below:
# prepare the net for training
net.train()
for epoch in range(n_epochs): # loop over the dataset multiple times
running_loss = 0.0
# train on batches of data, assumes you already have train_loader
for batch_i, data in enumerate(train_loader):
# get the input images and their corresponding labels
images = data['image']
key_pts = data['keypoints']
# flatten pts
key_pts = key_pts.view(key_pts.size(0), -1)
# wrap them in a torch Variable
images, key_pts = Variable(images), Variable(key_pts)
# convert variables to floats for regression loss
key_pts = key_pts.type(torch.FloatTensor)
images = images.type(torch.FloatTensor)
# forward pass to get outputs
output_pts = net(images)
# calculate the loss between predicted and target keypoints
loss = criterion(output_pts, key_pts)
# zero the parameter (weight) gradients
optimizer.zero_grad()
# backward pass to calculate the weight gradients
loss.backward()
# update the weights
optimizer.step()
# print loss statistics
running_loss += loss.data[0]
I am wondering if it is possible to add the validation error in the training? I mean something like this (validation split) in Keras
:
myModel.fit(trainX, trainY, epochs=50, batch_size=1, verbose=2, validation_split = 0.1)
I believe the formula for calculating validation loss is J=1N∑Nif(ˆyi,yi) where N is the number of the data and f is the loss function. However, some people calculate validation loss as J=1M∑f(ˆy,y) where M is the number of an epoch.
To train the model, you have to loop over our data iterator, feed the inputs to the network, and optimize. To validate the results, you simply compare the predicted labels to the actual labels in the validation dataset after every training epoch.
4. Validation Loss. On the contrary, validation loss is a metric used to assess the performance of a deep learning model on the validation set. The validation set is a portion of the dataset set aside to validate the performance of the model.
Here is an example how to split your dataset for training and validation, then switch between the two phases every epoch:
import numpy as np
import torch
from torchvision import datasets
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
# Examples:
my_dataset = datasets.MNIST(root="/home/benjamin/datasets/mnist", train=True, download=True)
validation_split = 0.1
dataset_len = len(my_dataset)
indices = list(range(dataset_len))
# Randomly splitting indices:
val_len = int(np.floor(validation_split * dataset_len))
validation_idx = np.random.choice(indices, size=val_len, replace=False)
train_idx = list(set(indices) - set(validation_idx))
# Contiguous split
# train_idx, validation_idx = indices[split:], indices[:split]
## Defining the samplers for each phase based on the random indices:
train_sampler = SubsetRandomSampler(train_idx)
validation_sampler = SubsetRandomSampler(validation_idx)
train_loader = torch.utils.data.DataLoader(my_dataset, sampler=train_sampler)
validation_loader = torch.utils.data.DataLoader(my_dataset, sampler=validation_sampler)
data_loaders = {"train": train_loader, "val": validation_loader}
data_lengths = {"train": len(train_idx), "val": val_len}
# Training with Validation (your code + code from Pytorch tutorial: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html)
n_epochs = 40
net = ...
for epoch in range(n_epochs):
print('Epoch {}/{}'.format(epoch, n_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
optimizer = scheduler(optimizer, epoch)
net.train(True) # Set model to training mode
else:
net.train(False) # Set model to evaluate mode
running_loss = 0.0
# Iterate over data.
for data in data_loaders[phase]:
# get the input images and their corresponding labels
images = data['image']
key_pts = data['keypoints']
# flatten pts
key_pts = key_pts.view(key_pts.size(0), -1)
# wrap them in a torch Variable
images, key_pts = Variable(images), Variable(key_pts)
# convert variables to floats for regression loss
key_pts = key_pts.type(torch.FloatTensor)
images = images.type(torch.FloatTensor)
# forward pass to get outputs
output_pts = net(images)
# calculate the loss between predicted and target keypoints
loss = criterion(output_pts, key_pts)
# zero the parameter (weight) gradients
optimizer.zero_grad()
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
# update the weights
optimizer.step()
# print loss statistics
running_loss += loss.data[0]
epoch_loss = running_loss / data_lengths[phase]
print('{} Loss: {:.4f}'.format(phase, epoch_loss))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With