Currently I used DTO(Data Transfer Object) like this.
class Test1:
def __init__(self,
user_id: int = None,
body: str = None):
self.user_id = user_id
self.body = body
Example code is very small, But when object scale growing up, I have to define every variable.
While digging into it, found that python 3.7 supported dataclass
Below code is DTO used dataclass.
from dataclasses import dataclass
@dataclass
class Test2:
user_id: int
body: str
In this case, How can I allow pass more argument that does not define into class Test2
?
If I used Test1
, it is easy. Just add **kwargs(asterisk)
into __init__
class Test1:
def __init__(self,
user_id: int = None,
body: str = None,
**kwargs):
self.user_id = user_id
self.body = body
But using dataclass, Can't found any way to implement it.
Is there any solution here?
Thanks.
EDIT
class Test1:
def __init__(self,
user_id: str = None,
body: str = None):
self.user_id = user_id
self.body = body
if __name__ == '__main__':
temp = {'user_id': 'hide', 'body': 'body test'}
t1 = Test1(**temp)
print(t1.__dict__)
Result : {'user_id': 'hide', 'body': 'body test'}
As you know, I want to insert data with dictionary type -> **temp
Reason to using asterisk in dataclass is the same.
I have to pass dictinary type to class init.
Any idea here?
The basic use case for dataclasses is to provide a container that maps arguments to attributes. If you have unknown arguments, you can't know the respective attributes during class creation.
You can work around it if you know during initialization which arguments are unknown by sending them to a catch-all attribute by hand:
from dataclasses import dataclass, field
@dataclass
class Container:
user_id: int
body: str
meta: field(default_factory=dict)
# usage:
obligatory_args = {'user_id': 1, 'body': 'foo'}
other_args = {'bar': 'baz', 'amount': 10}
c = Container(**obligatory_args, meta=other_args)
print(c.meta['bar']) # prints: 'baz'
But in this case you'll still have a dictionary you need to look into and can't access the arguments by their name, i.e. c.bar
doesn't work.
If you care about accessing attributes by name, or if you can't distinguish between known and unknown arguments during initialisation, then your last resort without rewriting __init__
(which pretty much defeats the purpose of using dataclasses
in the first place) is writing a @classmethod
:
from dataclasses import dataclass
from inspect import signature
@dataclass
class Container:
user_id: int
body: str
@classmethod
def from_kwargs(cls, **kwargs):
# fetch the constructor's signature
cls_fields = {field for field in signature(cls).parameters}
# split the kwargs into native ones and new ones
native_args, new_args = {}, {}
for name, val in kwargs.items():
if name in cls_fields:
native_args[name] = val
else:
new_args[name] = val
# use the native ones to create the class ...
ret = cls(**native_args)
# ... and add the new ones by hand
for new_name, new_val in new_args.items():
setattr(ret, new_name, new_val)
return ret
Usage:
params = {'user_id': 1, 'body': 'foo', 'bar': 'baz', 'amount': 10}
Container(**params) # still doesn't work, raises a TypeError
c = Container.from_kwargs(**params)
print(c.bar) # prints: 'baz'
Here's a neat variation on this I used.
from dataclasses import dataclass, field
from typing import Optional, Dict
@dataclass
class MyDataclass:
data1: Optional[str] = None
data2: Optional[Dict] = None
data3: Optional[Dict] = None
kwargs: field(default_factory=dict) = None
def __post_init__(self):
[setattr(self, k, v) for k, v in self.kwargs.items()]
This works as below:
>>> data = MyDataclass(data1="data1", kwargs={"test": 1, "test2": 2})
>>> data.test
1
>>> data.test2
2
However note that the dataclass does not seem to know that is has these new attributes:
>>> from dataclasses import asdict
>>> asdict(data)
{'data1': 'data1', 'data2': None, 'data3': None, 'kwargs': {'test': 1, 'test2': 2}}
This means that the keys have to be known. This worked for my use case and possibly others.
Dataclass only relies on the __init__
method so you're free to alter your class in the __new__
method.
from dataclasses import dataclass
@dataclass
class Container:
user_id: int
body: str
def __new__(cls, *args, **kwargs):
try:
initializer = cls.__initializer
except AttributeError:
# Store the original init on the class in a different place
cls.__initializer = initializer = cls.__init__
# replace init with something harmless
cls.__init__ = lambda *a, **k: None
# code from adapted from Arne
added_args = {}
for name in list(kwargs.keys()):
if name not in cls.__annotations__:
added_args[name] = kwargs.pop(name)
ret = object.__new__(cls)
initializer(ret, **kwargs)
# ... and add the new ones by hand
for new_name, new_val in added_args.items():
setattr(ret, new_name, new_val)
return ret
if __name__ == "__main__":
params = {'user_id': 1, 'body': 'foo', 'bar': 'baz', 'amount': 10}
c = Container(**params)
print(c.bar) # prints: 'baz'
print(c.body) # prints: 'baz'`
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With