Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Python progression path - From apprentice to guru

Tags:

python

People also ask

Can Python learn in 6 months?

To become a job-ready Python developer in less than 6 months, you have to code every day. The best way to make sure you keep the right track is by joining a Bootcamp or a course taught by software developers in the field.

How quickly can I become proficient in Python?

In general, it takes around two to six months to learn the fundamentals of Python. But you can learn enough to write your first short program in a matter of minutes. Developing mastery of Python's vast array of libraries can take months or years.


I thought the process of Python mastery went something like:

  1. Discover list comprehensions
  2. Discover generators
  3. Incorporate map, reduce, filter, iter, range, xrange often into your code
  4. Discover Decorators
  5. Write recursive functions, a lot
  6. Discover itertools and functools
  7. Read Real World Haskell (read free online)
  8. Rewrite all your old Python code with tons of higher order functions, recursion, and whatnot.
  9. Annoy your cubicle mates every time they present you with a Python class. Claim it could be "better" implemented as a dictionary plus some functions. Embrace functional programming.
  10. Rediscover the Strategy pattern and then all those things from imperative code you tried so hard to forget after Haskell.
  11. Find a balance.

One good way to further your Python knowledge is to dig into the source code of the libraries, platforms, and frameworks you use already.

For example if you're building a site on Django, many questions that might stump you can be answered by looking at how Django implements the feature in question.

This way you'll continue to pick up new idioms, coding styles, and Python tricks. (Some will be good and some will be bad.)

And when you see something Pythony that you don't understand in the source, hop over to the #python IRC channel and you'll find plenty of "language lawyers" happy to explain.

An accumulation of these little clarifications over years leads to a much deeper understanding of the language and all of its ins and outs.


Understand (more deeply) Python's data types and their roles with regards to memory mgmt

As some of you in the community are aware, I teach Python courses, the most popular ones being the comprehensive Intro+Intermediate course as well as an "advanced" course which introduces a variety of areas of application development.

Quite often, I get asked a question quite similar to, "Should I take your intro or advanced course? I've already been programming Python for 1-2 years, and I think the intro one is too simple for me so I'd like to jump straight to the advanced... which course would you recommend?"

To answer their question, I probe to see how strong they are in this area -- not that it's really the best way to measure whether they're ready for any advanced course, but to see how well their basic knowledge is of Python's objects and memory model, which is a cause of many Python bugs written by those who are not only beginners but those who have gone beyond that.

To do this, I point them at this simple 2-part quiz question: Ex1: x=42; y=x; x+=1; print x,y Ex2: x=[1,2,3];y=x;x[0]=4;print x,y

Many times, they are able to get the output, but the why is more difficult and much more important of an response... I would weigh the output as 20% of the answer while the "why" gets 80% credit. If they can't get the why, regardless how Python experience they have, I will always steer people to the comprehensive intro+intermediate course because I spend one lecture on objects and memory management to the point where you should be able to answer with the output and the why with sufficient confidence. (Just because you know Python's syntax after 1-2 years doesn't make you ready to move beyond a "beginner" label until you have a much better understanding as far as how Python works under the covers.)

A succeeding inquiry requiring a similar answer is even tougher, e.g.,

Example 3

x = ['foo', [1,2,3], 10.4]
y = list(x) # or x[:]
y[0] = 'fooooooo'
y[1][0] = 4
print x
print y

The next topics I recommend are to understanding reference counting well, learning what "interning" means (but not necessarily using it), learning about shallow and deep copies (as in Example 3 above), and finally, the interrelationships between the various types and constructs in the language, i.e. lists vs. tuples, dicts vs. sets, list comprehensions vs. generator expressions, iterators vs. generators, etc.; however all those other suggestions are another post for another time. Hope this helps in the meantime! :-)

ps. I agree with the other responses for getting more intimate with introspection as well as studying other projects' source code and add a strong "+1" to both suggestions!

pps. Great question BTW. I wish I was smart enough in the beginning to have asked something like this, but that was a long time ago, and now I'm trying to help others with my many years of full-time Python programming!!


Check out Peter Norvig's essay on becoming a master programmer in 10 years: http://norvig.com/21-days.html. I'd wager it holds true for any language.


Understand Introspection

  • write a dir() equivalent
  • write a type() equivalent
  • figure out how to "monkey-patch"
  • use the dis module to see how various language constructs work

Doing these things will

  • give you some good theoretical knowledge about how python is implemented
  • give you some good practical experience in lower-level programming
  • give you a good intuitive feel for python data structures

def apprentice():
  read(diveintopython)
  experiment(interpreter)
  read(python_tutorial)
  experiment(interpreter, modules/files)
  watch(pycon)

def master():
  refer(python-essential-reference)
  refer(PEPs/language reference)
  experiment()
  read(good_python_code) # Eg. twisted, other libraries
  write(basic_library)   # reinvent wheel and compare to existing wheels
  if have_interesting_ideas:
     give_talk(pycon)

def guru():
  pass # Not qualified to comment. Fix the GIL perhaps?

I'll give you the simplest and most effective piece of advice I think anybody could give you: code.

You can only be better at using a language (which implies understanding it) by coding. You have to actively enjoy coding, be inspired, ask questions, and find answers by yourself.

Got a an hour to spare? Write code that will reverse a string, and find out the most optimum solution. A free evening? Why not try some web-scraping. Read other peoples code. See how they do things. Ask yourself what you would do.

When I'm bored at my computer, I open my IDE and code-storm. I jot down ideas that sound interesting, and challenging. An URL shortener? Sure, I can do that. Oh, I learnt how to convert numbers from one base to another as a side effect!

This is valid whatever your skill level. You never stop learning. By actively coding in your spare time you will, with little additional effort, come to understand the language, and ultimately, become a guru. You will build up knowledge and reusable code and memorise idioms.