How can I achieve the equivalents of SQL's IN
and NOT IN
?
I have a list with the required values. Here's the scenario:
df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']}) countries_to_keep = ['UK', 'China'] # pseudo-code: df[df['country'] not in countries_to_keep]
My current way of doing this is as follows:
df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']}) df2 = pd.DataFrame({'country': ['UK', 'China'], 'matched': True}) # IN df.merge(df2, how='inner', on='country') # NOT IN not_in = df.merge(df2, how='left', on='country') not_in = not_in[pd.isnull(not_in['matched'])]
But this seems like a horrible kludge. Can anyone improve on it?
Filter Pandas Dataframe by Row and Column Position We can use df. iloc[ ] function for the same.
Definition and Usage. The isin() method checks if the Dataframe contains the specified value(s). It returns a DataFrame similar to the original DataFrame, but the original values have been replaced with True if the value was one of the specified values, otherwise False .
How to Use “not in” operator in Filter, To filter for rows in a data frame that is not in a list of values, use the following basic syntax in dplyr. df %>% filter(! col_name %in% c('value1', 'value2', 'value3', ...)) df %>% filter(!
You can use pd.Series.isin
.
For "IN" use: something.isin(somewhere)
Or for "NOT IN": ~something.isin(somewhere)
As a worked example:
import pandas as pd >>> df country 0 US 1 UK 2 Germany 3 China >>> countries_to_keep ['UK', 'China'] >>> df.country.isin(countries_to_keep) 0 False 1 True 2 False 3 True Name: country, dtype: bool >>> df[df.country.isin(countries_to_keep)] country 1 UK 3 China >>> df[~df.country.isin(countries_to_keep)] country 0 US 2 Germany
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With