Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

python pandas remove duplicate columns

Tags:

python

pandas

People also ask

How do I get rid of duplicate columns in Pandas?

To drop duplicate columns from pandas DataFrame use df. T. drop_duplicates(). T , this removes all columns that have the same data regardless of column names.

Can you have duplicate columns in Pandas?

Pandas, however, can be tricked into allowing duplicate column names. Duplicate column names are a problem if you plan to transfer your data set to another statistical language. They're also a problem because it will cause unanticipated and sometimes difficult to debug problems in Python.


Here's a one line solution to remove columns based on duplicate column names:

df = df.loc[:,~df.columns.duplicated()]

How it works:

Suppose the columns of the data frame are ['alpha','beta','alpha']

df.columns.duplicated() returns a boolean array: a True or False for each column. If it is False then the column name is unique up to that point, if it is True then the column name is duplicated earlier. For example, using the given example, the returned value would be [False,False,True].

Pandas allows one to index using boolean values whereby it selects only the True values. Since we want to keep the unduplicated columns, we need the above boolean array to be flipped (ie [True, True, False] = ~[False,False,True])

Finally, df.loc[:,[True,True,False]] selects only the non-duplicated columns using the aforementioned indexing capability.

Note: the above only checks columns names, not column values.


It sounds like you already know the unique column names. If that's the case, then df = df['Time', 'Time Relative', 'N2'] would work.

If not, your solution should work:

In [101]: vals = np.random.randint(0,20, (4,3))
          vals
Out[101]:
array([[ 3, 13,  0],
       [ 1, 15, 14],
       [14, 19, 14],
       [19,  5,  1]])

In [106]: df = pd.DataFrame(np.hstack([vals, vals]), columns=['Time', 'H1', 'N2', 'Time Relative', 'N2', 'Time'] )
          df
Out[106]:
   Time  H1  N2  Time Relative  N2  Time
0     3  13   0              3  13     0
1     1  15  14              1  15    14
2    14  19  14             14  19    14
3    19   5   1             19   5     1

In [107]: df.T.drop_duplicates().T
Out[107]:
   Time  H1  N2
0     3  13   0
1     1  15  14
2    14  19  14
3    19   5   1

You probably have something specific to your data that's messing it up. We could give more help if there's more details you could give us about the data.

Edit: Like Andy said, the problem is probably with the duplicate column titles.

For a sample table file 'dummy.csv' I made up:

Time    H1  N2  Time    N2  Time Relative
3   13  13  3   13  0
1   15  15  1   15  14
14  19  19  14  19  14
19  5   5   19  5   1

using read_table gives unique columns and works properly:

In [151]: df2 = pd.read_table('dummy.csv')
          df2
Out[151]:
         Time  H1  N2  Time.1  N2.1  Time Relative
      0     3  13  13       3    13              0
      1     1  15  15       1    15             14
      2    14  19  19      14    19             14
      3    19   5   5      19     5              1
In [152]: df2.T.drop_duplicates().T
Out[152]:
             Time  H1  Time Relative
          0     3  13              0
          1     1  15             14
          2    14  19             14
          3    19   5              1  

If your version doesn't let your, you can hack together a solution to make them unique:

In [169]: df2 = pd.read_table('dummy.csv', header=None)
          df2
Out[169]:
              0   1   2     3   4              5
        0  Time  H1  N2  Time  N2  Time Relative
        1     3  13  13     3  13              0
        2     1  15  15     1  15             14
        3    14  19  19    14  19             14
        4    19   5   5    19   5              1
In [171]: from collections import defaultdict
          col_counts = defaultdict(int)
          col_ix = df2.first_valid_index()
In [172]: cols = []
          for col in df2.ix[col_ix]:
              cnt = col_counts[col]
              col_counts[col] += 1
              suf = '_' + str(cnt) if cnt else ''
              cols.append(col + suf)
          cols
Out[172]:
          ['Time', 'H1', 'N2', 'Time_1', 'N2_1', 'Time Relative']
In [174]: df2.columns = cols
          df2 = df2.drop([col_ix])
In [177]: df2
Out[177]:
          Time  H1  N2 Time_1 N2_1 Time Relative
        1    3  13  13      3   13             0
        2    1  15  15      1   15            14
        3   14  19  19     14   19            14
        4   19   5   5     19    5             1
In [178]: df2.T.drop_duplicates().T
Out[178]:
          Time  H1 Time Relative
        1    3  13             0
        2    1  15            14
        3   14  19            14
        4   19   5             1 

Transposing is inefficient for large DataFrames. Here is an alternative:

def duplicate_columns(frame):
    groups = frame.columns.to_series().groupby(frame.dtypes).groups
    dups = []
    for t, v in groups.items():
        dcols = frame[v].to_dict(orient="list")

        vs = dcols.values()
        ks = dcols.keys()
        lvs = len(vs)

        for i in range(lvs):
            for j in range(i+1,lvs):
                if vs[i] == vs[j]: 
                    dups.append(ks[i])
                    break

    return dups       

Use it like this:

dups = duplicate_columns(frame)
frame = frame.drop(dups, axis=1)

Edit

A memory efficient version that treats nans like any other value:

from pandas.core.common import array_equivalent

def duplicate_columns(frame):
    groups = frame.columns.to_series().groupby(frame.dtypes).groups
    dups = []

    for t, v in groups.items():

        cs = frame[v].columns
        vs = frame[v]
        lcs = len(cs)

        for i in range(lcs):
            ia = vs.iloc[:,i].values
            for j in range(i+1, lcs):
                ja = vs.iloc[:,j].values
                if array_equivalent(ia, ja):
                    dups.append(cs[i])
                    break

    return dups

If I'm not mistaken, the following does what was asked without the memory problems of the transpose solution and with fewer lines than @kalu 's function, keeping the first of any similarly named columns.

Cols = list(df.columns)
for i,item in enumerate(df.columns):
    if item in df.columns[:i]: Cols[i] = "toDROP"
df.columns = Cols
df = df.drop("toDROP",1)

It looks like you were on the right path. Here is the one-liner you were looking for:

df.reset_index().T.drop_duplicates().T

But since there is no example data frame that produces the referenced error message Reindexing only valid with uniquely valued index objects, it is tough to say exactly what would solve the problem. if restoring the original index is important to you do this:

original_index = df.index.names
df.reset_index().T.drop_duplicates().reset_index(original_index).T

An update on @kalu's answer, which uses the latest pandas:

def find_duplicated_columns(df):
    dupes = []

    columns = df.columns

    for i in range(len(columns)):
        col1 = df.iloc[:, i]
        for j in range(i + 1, len(columns)):
            col2 = df.iloc[:, j]
            # break early if dtypes aren't the same (helps deal with
            # categorical dtypes)
            if col1.dtype is not col2.dtype:
                break
            # otherwise compare values
            if col1.equals(col2):
                dupes.append(columns[i])
                break

    return dupes