I have a data set like the following. We only have data for the last day of a month I am trying to interpolate rest of it, is it the right way of doing it?
Date Australia China
2011-01-01 NaN NaN
2011-01-02 NaN NaN
- - -
- - -
2011-01-31 4.75 5.81
2011-02-01 NaN NaN
2011-02-02 NaN NaN
- - -
- - -
2011-02-28 4.75 5.81
2011-03-01 NaN NaN
2011-03-02 NaN NaN
- - -
- - -
2011-03-31 4.75 6.06
2011-04-01 NaN NaN
2011-04-02 NaN NaN
- - -
- - -
2011-04-30 4.75 6.06
For interpolate this dataframe to find missing NaN values I am using the following code
import pandas as pd
df = pd.read_csv("data.csv", index_col="Date")
df.index = pd.DatetimeIndex(df.index)
df.interpolate(method='linear', axis=0).ffill().bfill()
But I am getting an error "TypeError: Cannot interpolate with all NaNs."
What might be wrong here, how I can fix this?
Thanks.
You can try convert dataframe
to float
by astype
:
import pandas as pd
df = pd.read_csv("data.csv", index_col=['Date'], parse_dates=['Date'])
print df
Australia China
Date
2011-01-31 4.75 5.81
2011-02-28 4.75 5.81
2011-03-31 4.75 6.06
2011-04-30 4.75 6.06
df = df.reindex(pd.date_range("2011-01-01", "2011-10-31"), fill_value="NaN")
#convert to float
df = df.astype(float)
df = df.interpolate(method='linear', axis=0).ffill().bfill()
print df
Australia China
2011-01-01 4.75 5.81
2011-01-02 4.75 5.81
2011-01-03 4.75 5.81
2011-01-04 4.75 5.81
2011-01-05 4.75 5.81
2011-01-06 4.75 5.81
2011-01-07 4.75 5.81
2011-01-08 4.75 5.81
2011-01-09 4.75 5.81
2011-01-10 4.75 5.81
2011-01-11 4.75 5.81
2011-01-12 4.75 5.81
2011-01-13 4.75 5.81
2011-01-14 4.75 5.81
2011-01-15 4.75 5.81
2011-01-16 4.75 5.81
2011-01-17 4.75 5.81
2011-01-18 4.75 5.81
2011-01-19 4.75 5.81
2011-01-20 4.75 5.81
2011-01-21 4.75 5.81
2011-01-22 4.75 5.81
2011-01-23 4.75 5.81
2011-01-24 4.75 5.81
2011-01-25 4.75 5.81
2011-01-26 4.75 5.81
2011-01-27 4.75 5.81
2011-01-28 4.75 5.81
2011-01-29 4.75 5.81
2011-01-30 4.75 5.81
... ... ...
2011-10-02 4.75 6.06
2011-10-03 4.75 6.06
2011-10-04 4.75 6.06
2011-10-05 4.75 6.06
2011-10-06 4.75 6.06
2011-10-07 4.75 6.06
2011-10-08 4.75 6.06
2011-10-09 4.75 6.06
2011-10-10 4.75 6.06
2011-10-11 4.75 6.06
2011-10-12 4.75 6.06
2011-10-13 4.75 6.06
2011-10-14 4.75 6.06
2011-10-15 4.75 6.06
2011-10-16 4.75 6.06
2011-10-17 4.75 6.06
2011-10-18 4.75 6.06
2011-10-19 4.75 6.06
2011-10-20 4.75 6.06
2011-10-21 4.75 6.06
2011-10-22 4.75 6.06
2011-10-23 4.75 6.06
2011-10-24 4.75 6.06
2011-10-25 4.75 6.06
2011-10-26 4.75 6.06
2011-10-27 4.75 6.06
2011-10-28 4.75 6.06
2011-10-29 4.75 6.06
2011-10-30 4.75 6.06
2011-10-31 4.75 6.06
[304 rows x 2 columns]
And you can omit ffill()
, because NaN
are only in first rows of dataframe
:
df = df.interpolate(method='linear', axis=0).ffill().bfill()
to:
df = df.interpolate(method='linear', axis=0).bfill()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With