I have a numpy array of type object. I want to find the columns with numerical values and cast them to float. Also I want to find the indices of the columns with object values. this is my attempt:
import numpy as np
import pandas as pd
df = pd.DataFrame({'A' : [1,2,3,4,5],'B' : ['A', 'A', 'C', 'D','B']})
X = df.values.copy()
obj_ind = []
for ind in range(X.shape[1]):
try:
X[:,ind] = X[:,ind].astype(np.float32)
except:
obj_ind = np.append(obj_ind,ind)
print obj_ind
print X.dtype
and this is the output I get:
[ 1.]
object
Generally your idea of trying to apply astype
to each column is fine.
In [590]: X[:,0].astype(int)
Out[590]: array([1, 2, 3, 4, 5])
But you have to collect the results in a separate list. You can't just put them back in X
. That list can then be concatenated.
In [601]: numlist=[]; obj_ind=[]
In [602]: for ind in range(X.shape[1]):
.....: try:
.....: x = X[:,ind].astype(np.float32)
.....: numlist.append(x)
.....: except:
.....: obj_ind.append(ind)
In [603]: numlist
Out[603]: [array([ 3., 4., 5., 6., 7.], dtype=float32)]
In [604]: np.column_stack(numlist)
Out[604]:
array([[ 3.],
[ 4.],
[ 5.],
[ 6.],
[ 7.]], dtype=float32)
In [606]: obj_ind
Out[606]: [1]
X
is a numpy array with dtype object
:
In [582]: X
Out[582]:
array([[1, 'A'],
[2, 'A'],
[3, 'C'],
[4, 'D'],
[5, 'B']], dtype=object)
You could use the same conversion logic to create a structured array with a mix of int and object fields.
In [616]: ytype=[]
In [617]: for ind in range(X.shape[1]):
try:
x = X[:,ind].astype(np.float32)
ytype.append('i4')
except:
ytype.append('O')
In [618]: ytype
Out[618]: ['i4', 'O']
In [620]: Y=np.zeros(X.shape[0],dtype=','.join(ytype))
In [621]: for i in range(X.shape[1]):
Y[Y.dtype.names[i]] = X[:,i]
In [622]: Y
Out[622]:
array([(3, 'A'), (4, 'A'), (5, 'C'), (6, 'D'), (7, 'B')],
dtype=[('f0', '<i4'), ('f1', 'O')])
Y['f0']
gives the the numeric field.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With