Assume I have below data frame
Date, A
2014-11-21 11:00:00, 1
2014-11-21 11:03:00, 4
2014-11-21 11:04:00, 1
2014-11-21 11:05:00, 2
2014-11-21 11:07:00, 4
2014-11-21 11:08:00, 1
2014-11-21 11:12:00, 1
2014-11-21 11:13:00, 2
First column is datetime object and second column is an integer. What I want is to calculate the sum of column 'A' for the last five minute for each row.
As an example for the row 2014-11-21 11:12:00, 1
, the sum of column 'A' would be 2(1+1) and the sum of column 'A' for the row 2014-11-21 11:05:00, 2
would be 7(2+1+4). Important thing is that the number of past rows for the time window(5 minutes) is not the same for each row (Because time series is irregular).
How can I get the sum of last five minutes for column 'A' using the rolling_sum method in pandas? Thanks in advance.
In general, if the dates are completely arbitrary, I think you would be forced to use a Python for-loop
over the rows or use df.apply
, (which under the hood, also uses a Python loop.)
However, if your Dates share a common frequency, as is the case above, then there is a trick which should be much quicker than using df.apply
: Expand the timeseries according to the common frequency -- in this case, 1 minute -- fill in the NaNs with zeros, and then call rolling_sum
:
In [279]: pd.rolling_sum(df.set_index(['Date']).asfreq('1T').fillna(0), window=5, min_periods=1).reindex(df['Date'])
Out[279]:
A
Date
2014-11-21 11:00:00 1
2014-11-21 11:03:00 5
2014-11-21 11:04:00 6
2014-11-21 11:05:00 7
2014-11-21 11:07:00 11
2014-11-21 11:08:00 8
2014-11-21 11:12:00 2
2014-11-21 11:13:00 3
Of course, any time series has a common frequency if you are willing to accept a small enough granularity, but the required size of df.asfreq(...)
may make this trick impractical.
Here is an example of the more general approach using df.apply
. Note that calling searchsorted
relies on df['Date']
being in sorted order.
import numpy as np
import pandas as pd
df = pd.read_csv('data', parse_dates=[0], sep=',\s*')
start_dates = df['Date'] - pd.Timedelta(minutes=5)
df['start_index'] = df['Date'].values.searchsorted(start_dates, side='right')
df['end_index'] = np.arange(len(df))
def sum_window(row):
return df['A'].iloc[row['start_index']:row['end_index']+1].sum()
df['rolling_sum'] = df.apply(sum_window, axis=1)
print(df[['Date', 'A', 'rolling_sum']])
yields
Date A rolling_sum
0 2014-11-21 11:00:00 1 1
1 2014-11-21 11:03:00 4 5
2 2014-11-21 11:04:00 1 6
3 2014-11-21 11:05:00 2 7
4 2014-11-21 11:07:00 4 11
5 2014-11-21 11:08:00 1 8
6 2014-11-21 11:12:00 1 2
7 2014-11-21 11:13:00 2 3
Here is a benchmark comparing the df.asfreq
trick versus calling df.apply
:
import numpy as np
import pandas as pd
df = pd.read_csv('data', parse_dates=[0], sep=',\s*')
def big_df(df):
df = df.copy()
for i in range(7):
dates = df['Date'] + pd.Timedelta(df.iloc[-1]['Date']-df.iloc[0]['Date']) + pd.Timedelta('1 minute')
df2 = pd.DataFrame({'Date': dates, 'A': df['A']})
df = pd.concat([df, df2])
df = df.reset_index(drop=True)
return df
def using_apply():
start_dates = df['Date'] - pd.Timedelta(minutes=5)
df['start_index'] = df['Date'].values.searchsorted(start_dates, side='right')
df['end_index'] = np.arange(len(df))
def sum_window(row):
return df['A'].iloc[row['start_index']:row['end_index']+1].sum()
df['rolling_sum'] = df.apply(sum_window, axis=1)
return df[['Date', 'rolling_sum']]
def using_asfreq():
result = (pd.rolling_sum(
df.set_index(['Date']).asfreq('1T').fillna(0),
window=5, min_periods=1).reindex(df['Date']))
return result
In [364]: df = big_df(df)
In [367]: %timeit using_asfreq()
1000 loops, best of 3: 1.21 ms per loop
In [368]: %timeit using_apply()
1 loops, best of 3: 208 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With