OpenCV comes with many powerful video editing functions. In current scenario, techniques such as image scanning, face recognition can be accomplished using OpenCV.
From here download this video so we have the same video file for the test. Make sure to have that mp4 file in the same directory of your python code. Then also make sure to run the python interpreter from the same directory.
Then modify the code, ditch waitKey
that's wasting time also without a window it cannot capture the keyboard events. Also we print the success
value to make sure it's reading the frames successfully.
import cv2
vidcap = cv2.VideoCapture('big_buck_bunny_720p_5mb.mp4')
success,image = vidcap.read()
count = 0
while success:
cv2.imwrite("frame%d.jpg" % count, image) # save frame as JPEG file
success,image = vidcap.read()
print('Read a new frame: ', success)
count += 1
How does that go?
To extend on this question (& answer by @user2700065) for a slightly different cases, if anyone does not want to extract every frame but wants to extract frame every one second. So a 1-minute video will give 60 frames(images).
import sys
import argparse
import cv2
print(cv2.__version__)
def extractImages(pathIn, pathOut):
count = 0
vidcap = cv2.VideoCapture(pathIn)
success,image = vidcap.read()
success = True
while success:
vidcap.set(cv2.CAP_PROP_POS_MSEC,(count*1000)) # added this line
success,image = vidcap.read()
print ('Read a new frame: ', success)
cv2.imwrite( pathOut + "\\frame%d.jpg" % count, image) # save frame as JPEG file
count = count + 1
if __name__=="__main__":
a = argparse.ArgumentParser()
a.add_argument("--pathIn", help="path to video")
a.add_argument("--pathOut", help="path to images")
args = a.parse_args()
print(args)
extractImages(args.pathIn, args.pathOut)
This is Function which will convert most of the video formats to number of frames there are in the video. It works on Python3
with OpenCV 3+
import cv2
import time
import os
def video_to_frames(input_loc, output_loc):
"""Function to extract frames from input video file
and save them as separate frames in an output directory.
Args:
input_loc: Input video file.
output_loc: Output directory to save the frames.
Returns:
None
"""
try:
os.mkdir(output_loc)
except OSError:
pass
# Log the time
time_start = time.time()
# Start capturing the feed
cap = cv2.VideoCapture(input_loc)
# Find the number of frames
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
print ("Number of frames: ", video_length)
count = 0
print ("Converting video..\n")
# Start converting the video
while cap.isOpened():
# Extract the frame
ret, frame = cap.read()
if not ret:
continue
# Write the results back to output location.
cv2.imwrite(output_loc + "/%#05d.jpg" % (count+1), frame)
count = count + 1
# If there are no more frames left
if (count > (video_length-1)):
# Log the time again
time_end = time.time()
# Release the feed
cap.release()
# Print stats
print ("Done extracting frames.\n%d frames extracted" % count)
print ("It took %d seconds forconversion." % (time_end-time_start))
break
if __name__=="__main__":
input_loc = '/path/to/video/00009.MTS'
output_loc = '/path/to/output/frames/'
video_to_frames(input_loc, output_loc)
It supports .mts
and normal files like .mp4
and .avi
. Tried and Tested on .mts
files. Works like a Charm.
This is a tweak from previous answer for python 3.x from @GShocked, I would post it to the comment, but dont have enough reputation
import sys
import argparse
import cv2
print(cv2.__version__)
def extractImages(pathIn, pathOut):
vidcap = cv2.VideoCapture(pathIn)
success,image = vidcap.read()
count = 0
success = True
while success:
success,image = vidcap.read()
print ('Read a new frame: ', success)
cv2.imwrite( pathOut + "\\frame%d.jpg" % count, image) # save frame as JPEG file
count += 1
if __name__=="__main__":
print("aba")
a = argparse.ArgumentParser()
a.add_argument("--pathIn", help="path to video")
a.add_argument("--pathOut", help="path to images")
args = a.parse_args()
print(args)
extractImages(args.pathIn, args.pathOut)
After a lot of research on how to convert frames to video I have created this function hope this helps. We require opencv for this:
import cv2
import numpy as np
import os
def frames_to_video(inputpath,outputpath,fps):
image_array = []
files = [f for f in os.listdir(inputpath) if isfile(join(inputpath, f))]
files.sort(key = lambda x: int(x[5:-4]))
for i in range(len(files)):
img = cv2.imread(inputpath + files[i])
size = (img.shape[1],img.shape[0])
img = cv2.resize(img,size)
image_array.append(img)
fourcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X')
out = cv2.VideoWriter(outputpath,fourcc, fps, size)
for i in range(len(image_array)):
out.write(image_array[i])
out.release()
inputpath = 'folder path'
outpath = 'video file path/video.mp4'
fps = 29
frames_to_video(inputpath,outpath,fps)
change the value of fps(frames per second),input folder path and output folder path according to your own local locations
The previous answers have lost the first frame. And it will be nice to store the images in a folder.
# create a folder to store extracted images
import os
folder = 'test'
os.mkdir(folder)
# use opencv to do the job
import cv2
print(cv2.__version__) # my version is 3.1.0
vidcap = cv2.VideoCapture('test_video.mp4')
count = 0
while True:
success,image = vidcap.read()
if not success:
break
cv2.imwrite(os.path.join(folder,"frame{:d}.jpg".format(count)), image) # save frame as JPEG file
count += 1
print("{} images are extacted in {}.".format(count,folder))
By the way, you can check the frame rate by VLC. Go to windows -> media information -> codec details
This code extract frames from the video and save the frames in .jpg formate
import cv2
import numpy as np
import os
# set video file path of input video with name and extension
vid = cv2.VideoCapture('VideoPath')
if not os.path.exists('images'):
os.makedirs('images')
#for frame identity
index = 0
while(True):
# Extract images
ret, frame = vid.read()
# end of frames
if not ret:
break
# Saves images
name = './images/frame' + str(index) + '.jpg'
print ('Creating...' + name)
cv2.imwrite(name, frame)
# next frame
index += 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With