Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I one hot encode in Python?

I have a machine learning classification problem with 80% categorical variables. Must I use one hot encoding if I want to use some classifier for the classification? Can i pass the data to a classifier without the encoding?

I am trying to do the following for feature selection:

  1. I read the train file:

    num_rows_to_read = 10000
    train_small = pd.read_csv("../../dataset/train.csv",   nrows=num_rows_to_read)
    
  2. I change the type of the categorical features to 'category':

    non_categorial_features = ['orig_destination_distance',
                              'srch_adults_cnt',
                              'srch_children_cnt',
                              'srch_rm_cnt',
                              'cnt']
    
    for categorical_feature in list(train_small.columns):
        if categorical_feature not in non_categorial_features:
            train_small[categorical_feature] = train_small[categorical_feature].astype('category')
    
  3. I use one hot encoding:

    train_small_with_dummies = pd.get_dummies(train_small, sparse=True)
    

The problem is that the 3'rd part often get stuck, although I am using a strong machine.

Thus, without the one hot encoding I can't do any feature selection, for determining the importance of the features.

What do you recommend?

like image 544
avicohen Avatar asked May 18 '16 07:05

avicohen


People also ask

How do you one-hot encode the column?

For basic one-hot encoding with Pandas you pass your data frame into the get_dummies function. This returns a new dataframe with a column for every "level" of rating that exists, along with either a 1 or 0 specifying the presence of that rating for a given observation.

How do you hot encode a number?

A one hot encoding is a representation of categorical variables as binary vectors. This first requires that the categorical values be mapped to integer values. Then, each integer value is represented as a binary vector that is all zero values except the index of the integer, which is marked with a 1.

What is OneHotEncoder in Python?

OneHotEncoder. Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature.

What is one-hot encoding and how do you do it?

One hot encoding is one method of converting data to prepare it for an algorithm and get a better prediction. With one-hot, we convert each categorical value into a new categorical column and assign a binary value of 1 or 0 to those columns. Each integer value is represented as a binary vector.

What is a one hot encoding in Python?

A one hot encoding is a representation of categorical variables as binary vectors. This first requires that the categorical values be mapped to integer values. Then, each integer value is represented as a binary vector that is all zero values except the index of the integer, which is marked with a 1.

How do I one-hot encode with pandas?

Much easier to use Pandas for basic one-hot encoding. If you're looking for more options you can use scikit-learn. For basic one-hot encoding with Pandas you simply pass your data frame into the get_dummies function. For example, if I have a dataframe called imdb_movies: ...and I want to one-hot encode...

Is it possible to use pandas for basic one hot encoding?

Much easier to use Pandas for basic one-hot encoding. If you're looking for more options you can use scikit-learn. For basic one-hot encoding with Pandas you pass your data frame into the get_dummies function.

How to create a Dataframe in Python with one-hot encoding?

Step 1: Create the Data 1 Step 1: Create the Data#N#First, let’s create the following pandas DataFrame:#N#import pandas as pd 2 create DataFrame df =... 3 Step 2: Perform One-Hot Encoding#N#Next, let’s import the OneHotEncoder () function from the sklearn library and use it to... 4 Step 3: Drop the Original Categorical Variable More ...


16 Answers

Approach 1: You can use pandas' pd.get_dummies.

Example 1:

import pandas as pd
s = pd.Series(list('abca'))
pd.get_dummies(s)
Out[]: 
     a    b    c
0  1.0  0.0  0.0
1  0.0  1.0  0.0
2  0.0  0.0  1.0
3  1.0  0.0  0.0

Example 2:

The following will transform a given column into one hot. Use prefix to have multiple dummies.

import pandas as pd
        
df = pd.DataFrame({
          'A':['a','b','a'],
          'B':['b','a','c']
        })
df
Out[]: 
   A  B
0  a  b
1  b  a
2  a  c

# Get one hot encoding of columns B
one_hot = pd.get_dummies(df['B'])
# Drop column B as it is now encoded
df = df.drop('B',axis = 1)
# Join the encoded df
df = df.join(one_hot)
df  
Out[]: 
       A  a  b  c
    0  a  0  1  0
    1  b  1  0  0
    2  a  0  0  1

Approach 2: Use Scikit-learn

Using a OneHotEncoder has the advantage of being able to fit on some training data and then transform on some other data using the same instance. We also have handle_unknown to further control what the encoder does with unseen data.

Given a dataset with three features and four samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding.

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])   
OneHotEncoder(categorical_features='all', dtype=<class 'numpy.float64'>,
   handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9], dtype=int32)
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])

Here is the link for this example: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

like image 134
Sayali Sonawane Avatar answered Oct 19 '22 13:10

Sayali Sonawane


Much easier to use Pandas for basic one-hot encoding. If you're looking for more options you can use scikit-learn.

For basic one-hot encoding with Pandas you pass your data frame into the get_dummies function.

For example, if I have a dataframe called imdb_movies:

enter image description here

...and I want to one-hot encode the Rated column, I do this:

pd.get_dummies(imdb_movies.Rated)

enter image description here

This returns a new dataframe with a column for every "level" of rating that exists, along with either a 1 or 0 specifying the presence of that rating for a given observation.

Usually, we want this to be part of the original dataframe. In this case, we attach our new dummy coded frame onto the original frame using "column-binding.

We can column-bind by using Pandas concat function:

rated_dummies = pd.get_dummies(imdb_movies.Rated)
pd.concat([imdb_movies, rated_dummies], axis=1)

enter image description here

We can now run an analysis on our full dataframe.

SIMPLE UTILITY FUNCTION

I would recommend making yourself a utility function to do this quickly:

def encode_and_bind(original_dataframe, feature_to_encode):
    dummies = pd.get_dummies(original_dataframe[[feature_to_encode]])
    res = pd.concat([original_dataframe, dummies], axis=1)
    return(res)

Usage:

encode_and_bind(imdb_movies, 'Rated')

Result:

enter image description here

Also, as per @pmalbu comment, if you would like the function to remove the original feature_to_encode then use this version:

def encode_and_bind(original_dataframe, feature_to_encode):
    dummies = pd.get_dummies(original_dataframe[[feature_to_encode]])
    res = pd.concat([original_dataframe, dummies], axis=1)
    res = res.drop([feature_to_encode], axis=1)
    return(res) 

You can encode multiple features at the same time as follows:

features_to_encode = ['feature_1', 'feature_2', 'feature_3',
                      'feature_4']
for feature in features_to_encode:
    res = encode_and_bind(train_set, feature)
like image 26
Cybernetic Avatar answered Oct 19 '22 14:10

Cybernetic


You can do it with numpy.eye and a using the array element selection mechanism:

import numpy as np
nb_classes = 6
data = [[2, 3, 4, 0]]

def indices_to_one_hot(data, nb_classes):
    """Convert an iterable of indices to one-hot encoded labels."""
    targets = np.array(data).reshape(-1)
    return np.eye(nb_classes)[targets]

The the return value of indices_to_one_hot(nb_classes, data) is now

array([[[ 0.,  0.,  1.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  1.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  1.,  0.],
        [ 1.,  0.,  0.,  0.,  0.,  0.]]])

The .reshape(-1) is there to make sure you have the right labels format (you might also have [[2], [3], [4], [0]]).

like image 30
Martin Thoma Avatar answered Oct 19 '22 15:10

Martin Thoma


Firstly, easiest way to one hot encode: use Sklearn.

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

Secondly, I don't think using pandas to one hot encode is that simple (unconfirmed though)

Creating dummy variables in pandas for python

Lastly, is it necessary for you to one hot encode? One hot encoding exponentially increases the number of features, drastically increasing the run time of any classifier or anything else you are going to run. Especially when each categorical feature has many levels. Instead you can do dummy coding.

Using dummy encoding usually works well, for much less run time and complexity. A wise prof once told me, 'Less is More'.

Here's the code for my custom encoding function if you want.

from sklearn.preprocessing import LabelEncoder

#Auto encodes any dataframe column of type category or object.
def dummyEncode(df):
        columnsToEncode = list(df.select_dtypes(include=['category','object']))
        le = LabelEncoder()
        for feature in columnsToEncode:
            try:
                df[feature] = le.fit_transform(df[feature])
            except:
                print('Error encoding '+feature)
        return df

EDIT: Comparison to be clearer:

One-hot encoding: convert n levels to n-1 columns.

Index  Animal         Index  cat  mouse
  1     dog             1     0     0
  2     cat       -->   2     1     0
  3    mouse            3     0     1

You can see how this will explode your memory if you have many different types (or levels) in your categorical feature. Keep in mind, this is just ONE column.

Dummy Coding:

Index  Animal         Index  Animal
  1     dog             1      0   
  2     cat       -->   2      1 
  3    mouse            3      2

Convert to numerical representations instead. Greatly saves feature space, at the cost of a bit of accuracy.

like image 23
Wboy Avatar answered Oct 19 '22 14:10

Wboy


One hot encoding with pandas is very easy:

def one_hot(df, cols):
    """
    @param df pandas DataFrame
    @param cols a list of columns to encode 
    @return a DataFrame with one-hot encoding
    """
    for each in cols:
        dummies = pd.get_dummies(df[each], prefix=each, drop_first=False)
        df = pd.concat([df, dummies], axis=1)
    return df

EDIT:

Another way to one_hot using sklearn's LabelBinarizer :

from sklearn.preprocessing import LabelBinarizer 
label_binarizer = LabelBinarizer()
label_binarizer.fit(all_your_labels_list) # need to be global or remembered to use it later

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    return label_binarizer.transform(x)
like image 44
Qy Zuo Avatar answered Oct 19 '22 14:10

Qy Zuo


You can use numpy.eye function.

import numpy as np

def one_hot_encode(x, n_classes):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
     """
    return np.eye(n_classes)[x]

def main():
    list = [0,1,2,3,4,3,2,1,0]
    n_classes = 5
    one_hot_list = one_hot_encode(list, n_classes)
    print(one_hot_list)

if __name__ == "__main__":
    main()

Result

D:\Desktop>python test.py
[[ 1.  0.  0.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 0.  0.  1.  0.  0.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  0.  0.  1.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.]]
like image 39
Dieter Avatar answered Oct 19 '22 15:10

Dieter


pandas as has inbuilt function "get_dummies" to get one hot encoding of that particular column/s.

one line code for one-hot-encoding:

df=pd.concat([df,pd.get_dummies(df['column name'],prefix='column name')],axis=1).drop(['column name'],axis=1)
like image 34
Arshdeep Singh Avatar answered Oct 19 '22 13:10

Arshdeep Singh


Here is a solution using DictVectorizer and the Pandas DataFrame.to_dict('records') method.

>>> import pandas as pd
>>> X = pd.DataFrame({'income': [100000,110000,90000,30000,14000,50000],
                      'country':['US', 'CAN', 'US', 'CAN', 'MEX', 'US'],
                      'race':['White', 'Black', 'Latino', 'White', 'White', 'Black']
                     })

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer()
>>> qualitative_features = ['country','race']
>>> X_qual = v.fit_transform(X[qualitative_features].to_dict('records'))
>>> v.vocabulary_
{'country=CAN': 0,
 'country=MEX': 1,
 'country=US': 2,
 'race=Black': 3,
 'race=Latino': 4,
 'race=White': 5}

>>> X_qual.toarray()
array([[ 0.,  0.,  1.,  0.,  0.,  1.],
       [ 1.,  0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  1.,  0.],
       [ 1.,  0.,  0.,  0.,  0.,  1.],
       [ 0.,  1.,  0.,  0.,  0.,  1.],
       [ 0.,  0.,  1.,  1.,  0.,  0.]])
like image 27
Josh Morel Avatar answered Oct 19 '22 15:10

Josh Morel


One-hot encoding requires bit more than converting the values to indicator variables. Typically ML process requires you to apply this coding several times to validation or test data sets and applying the model you construct to real-time observed data. You should store the mapping (transform) that was used to construct the model. A good solution would use the DictVectorizer or LabelEncoder (followed by get_dummies. Here is a function that you can use:

def oneHotEncode2(df, le_dict = {}):
    if not le_dict:
        columnsToEncode = list(df.select_dtypes(include=['category','object']))
        train = True;
    else:
        columnsToEncode = le_dict.keys()   
        train = False;

    for feature in columnsToEncode:
        if train:
            le_dict[feature] = LabelEncoder()
        try:
            if train:
                df[feature] = le_dict[feature].fit_transform(df[feature])
            else:
                df[feature] = le_dict[feature].transform(df[feature])

            df = pd.concat([df, 
                              pd.get_dummies(df[feature]).rename(columns=lambda x: feature + '_' + str(x))], axis=1)
            df = df.drop(feature, axis=1)
        except:
            print('Error encoding '+feature)
            #df[feature]  = df[feature].convert_objects(convert_numeric='force')
            df[feature]  = df[feature].apply(pd.to_numeric, errors='coerce')
    return (df, le_dict)

This works on a pandas dataframe and for each column of the dataframe it creates and returns a mapping back. So you would call it like this:

train_data, le_dict = oneHotEncode2(train_data)

Then on the test data, the call is made by passing the dictionary returned back from training:

test_data, _ = oneHotEncode2(test_data, le_dict)

An equivalent method is to use DictVectorizer. A related post on the same is on my blog. I mention it here since it provides some reasoning behind this approach over simply using get_dummies post (disclosure: this is my own blog).

like image 31
Tukeys Avatar answered Oct 19 '22 13:10

Tukeys


You can pass the data to catboost classifier without encoding. Catboost handles categorical variables itself by performing one-hot and target expanding mean encoding.

like image 26
Garima Jain Avatar answered Oct 19 '22 14:10

Garima Jain


You can do the following as well. Note for the below you don't have to use pd.concat.

import pandas as pd 
# intialise data of lists. 
data = {'Color':['Red', 'Yellow', 'Red', 'Yellow'], 'Length':[20.1, 21.1, 19.1, 18.1],
       'Group':[1,2,1,2]} 

# Create DataFrame 
df = pd.DataFrame(data) 

for _c in df.select_dtypes(include=['object']).columns:
    print(_c)
    df[_c]  = pd.Categorical(df[_c])
df_transformed = pd.get_dummies(df)
df_transformed

You can also change explicit columns to categorical. For example, here I am changing the Color and Group

import pandas as pd 
# intialise data of lists. 
data = {'Color':['Red', 'Yellow', 'Red', 'Yellow'], 'Length':[20.1, 21.1, 19.1, 18.1],
       'Group':[1,2,1,2]} 

# Create DataFrame 
df = pd.DataFrame(data) 
columns_to_change = list(df.select_dtypes(include=['object']).columns)
columns_to_change.append('Group')
for _c in columns_to_change:
    print(_c)
    df[_c]  = pd.Categorical(df[_c])
df_transformed = pd.get_dummies(df)
df_transformed
like image 38
sushmit Avatar answered Oct 19 '22 13:10

sushmit


I know I'm late to this party, but the simplest way to hot encode a dataframe in an automated way is to use this function:

def hot_encode(df):
    obj_df = df.select_dtypes(include=['object'])
    return pd.get_dummies(df, columns=obj_df.columns).values
like image 20
Rambatino Avatar answered Oct 19 '22 15:10

Rambatino


This works for me:

pandas.factorize( ['B', 'C', 'D', 'B'] )[0]

Output:

[0, 1, 2, 0]
like image 34
scottlittle Avatar answered Oct 19 '22 14:10

scottlittle


I used this in my acoustic model: probably this helps in ur model.

def one_hot_encoding(x, n_out):
    x = x.astype(int)  
    shape = x.shape
    x = x.flatten()
    N = len(x)
    x_categ = np.zeros((N,n_out))
    x_categ[np.arange(N), x] = 1
    return x_categ.reshape((shape)+(n_out,))
like image 21
yunus Avatar answered Oct 19 '22 15:10

yunus


Short Answer

Here is a function to do one-hot-encoding without using numpy, pandas, or other packages. It takes a list of integers, booleans, or strings (and perhaps other types too).

import typing


def one_hot_encode(items: list) -> typing.List[list]:
    results = []
    # find the unique items (we want to unique items b/c duplicate items will have the same encoding)
    unique_items = list(set(items))
    # sort the unique items
    sorted_items = sorted(unique_items)
    # find how long the list of each item should be
    max_index = len(unique_items)

    for item in items:
        # create a list of zeros the appropriate length
        one_hot_encoded_result = [0 for i in range(0, max_index)]
        # find the index of the item
        one_hot_index = sorted_items.index(item)
        # change the zero at the index from the previous line to a one
        one_hot_encoded_result[one_hot_index] = 1
        # add the result
        results.append(one_hot_encoded_result)

    return results

Example:

one_hot_encode([2, 1, 1, 2, 5, 3])

# [[0, 1, 0, 0],
#  [1, 0, 0, 0],
#  [1, 0, 0, 0],
#  [0, 1, 0, 0],
#  [0, 0, 0, 1],
#  [0, 0, 1, 0]]
one_hot_encode([True, False, True])

# [[0, 1], [1, 0], [0, 1]]
one_hot_encode(['a', 'b', 'c', 'a', 'e'])

# [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]]

Long(er) Answer

I know there are already a lot of answers to this question, but I noticed two things. First, most of the answers use packages like numpy and/or pandas. And this is a good thing. If you are writing production code, you should probably be using robust, fast algorithms like those provided in the numpy/pandas packages. But, for the sake of education, I think someone should provide an answer which has a transparent algorithm and not just an implementation of someone else's algorithm. Second, I noticed that many of the answers do not provide a robust implementation of one-hot encoding because they do not meet one of the requirements below. Below are some of the requirements (as I see them) for a useful, accurate, and robust one-hot encoding function:

A one-hot encoding function must:

  • handle list of various types (e.g. integers, strings, floats, etc.) as input
  • handle an input list with duplicates
  • return a list of lists corresponding (in the same order as) to the inputs
  • return a list of lists where each list is as short as possible

I tested many of the answers to this question and most of them fail on one of the requirements above.

like image 30
Floyd Avatar answered Oct 19 '22 13:10

Floyd


Try this:

!pip install category_encoders
import category_encoders as ce

categorical_columns = [...the list of names of the columns you want to one-hot-encode ...]
encoder = ce.OneHotEncoder(cols=categorical_columns, use_cat_names=True)
df_train_encoded = encoder.fit_transform(df_train_small)

df_encoded.head()

The resulting dataframe df_train_encoded is the same as the original, but the categorical features are now replaced with their one-hot-encoded versions.

More information on category_encoders here.

like image 33
Andrea Araldo Avatar answered Oct 19 '22 14:10

Andrea Araldo