I am new in Python and am currently facing an issue I can't solve. I really hope you can help me out. English is not my native languge so I am sorry if I am not able to express myself properly.
Say I have a simple data frame with two columns:
index Num_Albums Num_authors
0 10 4
1 1 5
2 4 4
3 7 1000
4 1 44
5 3 8
Num_Abums_tot = sum(Num_Albums) = 30
I need to do a cumulative sum of the data in Num_Albums
until a certain condition is reached. Register the index at which the condition is achieved and get the correspondent value from Num_authors
.
Example:
cumulative sum of Num_Albums
until the sum equals 50% ± 1/15 of 30 (--> 15±2):
10 = 15±2? No, then continue;
10+1 =15±2? No, then continue
10+1+41 = 15±2? Yes, stop.
Condition reached at index 2. Then get Num_Authors
at that index: Num_Authors(2)=4
I would like to see if there's a function already implemented in pandas
, before I start thinking how to do it with a while/for loop....
[I would like to specify the column from which I want to retrieve the value at the relevant index (this comes in handy when I have e.g. 4 columns and i want to sum elements in column 1, condition achieved =yes then get the correspondent value in column 2; then do the same with column 3 and 4)].
The cumsum() method returns a DataFrame with the cumulative sum for each row. The cumsum() method goes through the values in the DataFrame, from the top, row by row, adding the values with the value from the previous row, ending up with a DataFrame where the last row contains the sum of all values for each column.
sum() to Sum All Columns. Use DataFrame. sum() to get sum/total of a DataFrame for both rows and columns, to get the total sum of columns use axis=1 param. By default, this method takes axis=0 which means summing of rows.
Opt - 1:
You could compute the cumulative sum using cumsum
. Then use np.isclose
with it's inbuilt tolerance parameter to check if the values present in this series lies within the specified threshold of 15 +/- 2. This returns a boolean array.
Through np.flatnonzero
, return the ordinal values of the indices for which the True
condition holds. We select the first instance of a True
value.
Finally, use .iloc
to retrieve value of the column name you require based on the index computed earlier.
val = np.flatnonzero(np.isclose(df.Num_Albums.cumsum().values, 15, atol=2))[0]
df['Num_authors'].iloc[val] # for faster access, use .iat
4
When performing np.isclose
on the series
later converted to an array:
np.isclose(df.Num_Albums.cumsum().values, 15, atol=2)
array([False, False, True, False, False, False], dtype=bool)
Opt - 2:
Use pd.Index.get_loc
on the cumsum
calculated series which also supports a tolerance
parameter on the nearest
method.
val = pd.Index(df.Num_Albums.cumsum()).get_loc(15, 'nearest', tolerance=2)
df.get_value(val, 'Num_authors')
4
Opt - 3:
Use idxmax
to find the first index of a True
value for the boolean mask created after sub
and abs
operations on the cumsum
series:
df.get_value(df.Num_Albums.cumsum().sub(15).abs().le(2).idxmax(), 'Num_authors')
4
I think you can directly add a column with the cumulative sum as:
In [3]: df
Out[3]:
index Num_Albums Num_authors
0 0 10 4
1 1 1 5
2 2 4 4
3 3 7 1000
4 4 1 44
5 5 3 8
In [4]: df['cumsum'] = df['Num_Albums'].cumsum()
In [5]: df
Out[5]:
index Num_Albums Num_authors cumsum
0 0 10 4 10
1 1 1 5 11
2 2 4 4 15
3 3 7 1000 22
4 4 1 44 23
5 5 3 8 26
And then apply the condition you want on the cumsum
column. For instance you can use where
to get the full row according to the filter. Setting the tolerance tol
:
In [18]: tol = 2
In [19]: cond = df.where((df['cumsum']>=15-tol)&(df['cumsum']<=15+tol)).dropna()
In [20]: cond
Out[20]:
index Num_Albums Num_authors cumsum
2 2.0 4.0 4.0 15.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With