Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

where is the ./configure of TensorFlow and how to enable the GPU support?

When installing TensorFlow on my Ubuntu, I would like to use GPU with CUDA.

But I am stopped at this step in the Official Tutorial :

enter image description here

Where exactly is this ./configure ? Or where is my root of source tree.

My TensorFlow is located here /usr/local/lib/python2.7/dist-packages/tensorflow. But I still did not find ./configure.

EDIT

I have found the ./configure according to Salvador Dali's answer. But when doing the example code, I got the following error:

>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 8
E tensorflow/stream_executor/cuda/cuda_driver.cc:466] failed call to cuInit: CUDA_ERROR_NO_DEVICE
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:86] kernel driver does not appear to be running on this host (cliu-ubuntu): /proc/driver/nvidia/version does not exist
I tensorflow/core/common_runtime/gpu/gpu_init.cc:112] DMA: 
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 8

The cuda device cannot be found.

Answer

See the answer about how did I enable GPU support here.

like image 682
fluency03 Avatar asked Nov 11 '15 20:11

fluency03


People also ask

What GPU supports TensorFlow?

Note: TensorFlow binaries use AVX instructions which may not run on older CPUs. The following GPU-enabled devices are supported: NVIDIA® GPU card with CUDA® architectures 3.5, 5.0, 6.0, 7.0, 7.5, 8.0 and higher. See the list of CUDA®-enabled GPU cards.


2 Answers

This is a bash script which suppose to be in

the root of your source tree

when you cloned the repo. Here it is https://github.com/tensorflow/tensorflow/blob/master/configure

like image 113
Salvador Dali Avatar answered Oct 03 '22 09:10

Salvador Dali


  • Answer to first question: ./configure has already been found according to the answer here. It is under the source folder of tensorflow as shown here.

  • Answer to second question:

Actually, I have the GPU NVIDIA Corporation GK208GLM [Quadro K610M]. I also have CUDA + cuDNN installed. (Therefore, the following answer is based on you have already installed CUDA 7.0+ + cuDNN correctly with the correct versions.) However the problem is: I have driver installed but the GPU is just not working. I made it working in the following steps:

At first, I did this lspci and got:

01:00.0 VGA compatible controller: NVIDIA Corporation GK208GLM [Quadro K610M] (rev ff)

The status here is rev ff. Then, I did sudo update-pciids, and check lspci again, and got:

01:00.0 VGA compatible controller: NVIDIA Corporation GK208GLM [Quadro K610M] (rev a1)

Now, the status of Nvidia GPU is correct as rev a1. But now, the tensorflow is not supporting GPU yet. The next steps are (the Nvidia driver I installed is version nvidia-352):

sudo modprobe nvidia_352
sudo modprobe nvidia_352_uvm

in order to add the driver into correct mode. Check again:

cliu@cliu-ubuntu:~$ lspci -vnn | grep -i VGA -A 12
01:00.0 VGA compatible controller [0300]: NVIDIA Corporation GK208GLM [Quadro K610M] [10de:12b9] (rev a1) (prog-if 00 [VGA controller])
    Subsystem: Hewlett-Packard Company Device [103c:1909]
    Flags: bus master, fast devsel, latency 0, IRQ 16
    Memory at cb000000 (32-bit, non-prefetchable) [size=16M]
    Memory at 50000000 (64-bit, prefetchable) [size=256M]
    Memory at 60000000 (64-bit, prefetchable) [size=32M]
    I/O ports at 5000 [size=128]
    Expansion ROM at cc000000 [disabled] [size=512K]
    Capabilities: <access denied>
    Kernel driver in use: nvidia
cliu@cliu-ubuntu:~$ lsmod | grep nvidia
nvidia_uvm             77824  0 
nvidia               8646656  1 nvidia_uvm
drm                   348160  7 i915,drm_kms_helper,nvidia

We can find that the Kernel driver in use: nvidia is shown and nvidia is in correct mode.

Now, use the example here for testing the GPU:

cliu@cliu-ubuntu:~$ python
Python 2.7.9 (default, Apr  2 2015, 15:33:21) 
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
>>> b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
>>> c = tf.matmul(a, b)
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 8
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:888] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:88] Found device 0 with properties: 
name: Quadro K610M
major: 3 minor: 5 memoryClockRate (GHz) 0.954
pciBusID 0000:01:00.0
Total memory: 1023.81MiB
Free memory: 1007.66MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:112] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:122] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:643] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0)
I tensorflow/core/common_runtime/gpu/gpu_region_allocator.cc:47] Setting region size to 846897152
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 8
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0
I tensorflow/core/common_runtime/local_session.cc:107] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0

>>> print sess.run(c)
b: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] b: /job:localhost/replica:0/task:0/gpu:0
a: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] a: /job:localhost/replica:0/task:0/gpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] MatMul: /job:localhost/replica:0/task:0/gpu:0
[[ 22.  28.]
 [ 49.  64.]]

As you can see, the GPU is utilized.

like image 29
fluency03 Avatar answered Oct 03 '22 10:10

fluency03