I am trying to vertically concatenate two Dask DataFrames
I have the following Dask DataFrame:
d = [
['A','B','C','D','E','F'],
[1, 4, 8, 1, 3, 5],
[6, 6, 2, 2, 0, 0],
[9, 4, 5, 0, 6, 35],
[0, 1, 7, 10, 9, 4],
[0, 7, 2, 6, 1, 2]
]
df = pd.DataFrame(d[1:], columns=d[0])
ddf = dd.from_pandas(df, npartitions=5)
Here is the data as a Pandas DataFrame
A B C D E F
0 1 4 8 1 3 5
1 6 6 2 2 0 0
2 9 4 5 0 6 35
3 0 1 7 10 9 4
4 0 7 2 6 1 2
Here is the Dask DataFrame
Dask DataFrame Structure:
A B C D E F
npartitions=4
0 int64 int64 int64 int64 int64 int64
1 ... ... ... ... ... ...
2 ... ... ... ... ... ...
3 ... ... ... ... ... ...
4 ... ... ... ... ... ...
Dask Name: from_pandas, 4 tasks
I am trying to concatenate 2 Dask DataFrames vertically:
ddf_i = ddf + 11.5
dd.concat([ddf,ddf_i],axis=0)
but I get this error:
Traceback (most recent call last):
...
File "...", line 572, in concat
raise ValueError('All inputs have known divisions which cannot '
ValueError: All inputs have known divisions which cannot be concatenated
in order. Specify interleave_partitions=True to ignore order
However, if I try:
dd.concat([ddf,ddf_i],axis=0,interleave_partitions=True)
then it appears to be working. Is there a problem with setting this to True
(in terms of performance - speed)? Or is there another way to vertically 2 concatenate Dask DataFrames?
If you inspect the divisions of the dataframe ddf.divisions
, you will find, assuming one partition, that it has the edges of the index there: (0, 4). This is useful to dask, as it knows when you do some operation on the data, not to use a partition not including required index values. This is also why some dask operations are much faster when the index is appropriate for the job.
When you concatenate, the second dataframe has the same index as the first. Concatenation would work without interleaving if the values of the index had different ranges in the two partitions.
mdurant's answer is correct and this answer elaborate with MCVE code snippets using Dask v2021.08.1. Examples make it easier to understand divisions and interleaving.
Vertically concatenating DataFrames
Create two DataFrames, concatenate them, and view the results.
df = pd.DataFrame(
{"nums": [1, 2, 3, 4, 5, 6], "letters": ["a", "b", "c", "d", "e", "f"]}
)
ddf1 = dd.from_pandas(df, npartitions=2)
df = pd.DataFrame({"nums": [88, 99], "letters": ["xx", "yy"]})
ddf2 = dd.from_pandas(df, npartitions=1)
ddf3 = dd.concat([ddf1, ddf2])
print(ddf3.compute())
nums letters
0 1 a
1 2 b
2 3 c
3 4 d
4 5 e
5 6 f
0 88 xx
1 99 yy
Divisions metadata when vertically concatenating
Create two DataFrames, concatenate them, and illustrate that sometimes this operation will cause divisions metadata to be lost.
def print_partitions(ddf):
for i in range(ddf.npartitions):
print(ddf.partitions[i].compute())
df = pd.DataFrame(
{"nums": [1, 2, 3, 4, 5, 6], "letters": ["a", "b", "c", "d", "e", "f"]}
)
ddf1 = dd.from_pandas(df, npartitions=2)
ddf1.divisions # (0, 3, 5)
df = pd.DataFrame({"nums": [88, 99], "letters": ["xx", "yy"]})
ddf2 = dd.from_pandas(df, npartitions=1)
ddf2.divisions # (0, 1)
ddf3 = dd.concat([ddf1, ddf2])
ddf3.divisions # (None, None, None, None)
Set interleave_partitions=True
to avoid losing the divisions metadata.
ddf3_interleave = dd.concat([ddf1, ddf2], interleave_partitions=True)
ddf3_interleave.divisions # (0, 1, 3, 5)
When interleaving isn't necessary
Create two DataFrames without overlapping divisions, concatenate them, and confirm that the divisions metadata is not lost:
df = pd.DataFrame(
{"nums": [1, 2, 3, 4], "letters": ["a", "b", "c", "d"], "some_index": [4, 5, 6, 7]}
)
ddf1 = dd.from_pandas(df, npartitions=2)
ddf1 = ddf1.set_index("some_index")
df = pd.DataFrame({"nums": [88, 99], "letters": ["xx", "yy"], "some_index": [10, 20]})
ddf2 = dd.from_pandas(df, npartitions=1)
ddf2 = ddf2.set_index("some_index")
ddf3 = dd.concat([ddf1, ddf2])
ddf3.divisions # (4, 6, 10, 20)
I wrote a blog post to explain this in more detail. Let me know if you'd like the link.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With