I have a pair of 1D arrays (of different lengths) like the following:
data1 = [0,0,0,1,1,1,0,1,0,0,1]
data2 = [0,1,1,0,1,0,0,1]
I would like to get the max cross correlation of the 2 series in python. In matlab, the xcorr()
function will return it OK
I have tried the following 2 methods:
numpy.correlate(data1, data2)
signal.fftconvolve(data2, data1[::-1], mode='full')
Both methods give me the same values, but the values I get from python are different from what comes out of matlab. Python gives me integers values > 1, whereas matlab gives actual correlation values between 0 and 1.
I have tried normalizing the 2 arrays first (value-mean/SD), but the cross correlation values I get are in the thousands which doesnt seem correct.
Matlab will also give you a lag value at which the cross correlation is the greatest. I assume it is easy to do this using indices but whats the most appropriate way of doing this if my arrays contain 10's of thousands of values?
I would like to mimic the xcorr(
) function that matlab has, any thoughts on how I would do that in python?
Cross correlation is a way to measure the degree of similarity between a time series and a lagged version of another time series. This type of correlation is useful to calculate because it can tell us if the values of one time series are predictive of the future values of another time series.
calculates the lag / displacement indices array for 1D cross-correlation.
Implementation of MATLAB xcorr(x,y) and comparision of result with example.
import scipy.signal as signal
def xcorr(x,y):
"""
Perform Cross-Correlation on x and y
x : 1st signal
y : 2nd signal
returns
lags : lags of correlation
corr : coefficients of correlation
"""
corr = signal.correlate(x, y, mode="full")
lags = signal.correlation_lags(len(x), len(y), mode="full")
return lags, corr
n = np.array([i for i in range(0,15)])
x = 0.84**n
y = np.roll(x,5);
lags,c = xcorr(x,y);
plt.figure()
plt.stem(lags,c)
plt.show()
numpy.correlate(arr1,arr2,"full")
gave me same output as
xcorr(arr1,arr2)
gives in matlab
This code will help in finding the delay between two channels in audio file
xin, fs = sf.read('recording1.wav')
frame_len = int(fs*5*1e-3)
dim_x =xin.shape
M = dim_x[0] # No. of rows
N= dim_x[1] # No. of col
sample_lim = frame_len*100
tau = [0]
M_lim = 20000 # for testing as processing takes time
for i in range(1,N):
c = np.correlate(xin[0:M_lim,0],xin[0:M_lim,i],"full")
maxlags = M_lim-1
c = c[M_lim -1 -maxlags: M_lim + maxlags]
Rmax_pos = np.argmax(c)
pos = Rmax_pos-M_lim+1
tau.append(pos)
print(tau)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With